kern_synch.c revision 7090
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.9 1994/12/12 06:04:27 davidg Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/buf.h>
47#include <sys/signalvar.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <vm/vm.h>
51#ifdef KTRACE
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56
57u_char	curpriority;		/* usrpri of curproc */
58int	lbolt;			/* once a second sleep address */
59
60void	endtsleep __P((void *));
61
62/*
63 * Force switch among equal priority processes every 100ms.
64 */
65/* ARGSUSED */
66void
67roundrobin(arg)
68	void *arg;
69{
70
71	need_resched();
72	timeout(roundrobin, NULL, hz / 10);
73}
74
75/*
76 * Constants for digital decay and forget:
77 *	90% of (p_estcpu) usage in 5 * loadav time
78 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
79 *          Note that, as ps(1) mentions, this can let percentages
80 *          total over 100% (I've seen 137.9% for 3 processes).
81 *
82 * Note that hardclock updates p_estcpu and p_cpticks independently.
83 *
84 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
85 * That is, the system wants to compute a value of decay such
86 * that the following for loop:
87 * 	for (i = 0; i < (5 * loadavg); i++)
88 * 		p_estcpu *= decay;
89 * will compute
90 * 	p_estcpu *= 0.1;
91 * for all values of loadavg:
92 *
93 * Mathematically this loop can be expressed by saying:
94 * 	decay ** (5 * loadavg) ~= .1
95 *
96 * The system computes decay as:
97 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
98 *
99 * We wish to prove that the system's computation of decay
100 * will always fulfill the equation:
101 * 	decay ** (5 * loadavg) ~= .1
102 *
103 * If we compute b as:
104 * 	b = 2 * loadavg
105 * then
106 * 	decay = b / (b + 1)
107 *
108 * We now need to prove two things:
109 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
110 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
111 *
112 * Facts:
113 *         For x close to zero, exp(x) =~ 1 + x, since
114 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
115 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
116 *         For x close to zero, ln(1+x) =~ x, since
117 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
118 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
119 *         ln(.1) =~ -2.30
120 *
121 * Proof of (1):
122 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
123 *	solving for factor,
124 *      ln(factor) =~ (-2.30/5*loadav), or
125 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
126 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
127 *
128 * Proof of (2):
129 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
130 *	solving for power,
131 *      power*ln(b/(b+1)) =~ -2.30, or
132 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
133 *
134 * Actual power values for the implemented algorithm are as follows:
135 *      loadav: 1       2       3       4
136 *      power:  5.68    10.32   14.94   19.55
137 */
138
139/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
140#define	loadfactor(loadav)	(2 * (loadav))
141#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
142
143/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
144fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
145
146/*
147 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
148 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
149 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
150 *
151 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
152 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
153 *
154 * If you dont want to bother with the faster/more-accurate formula, you
155 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
156 * (more general) method of calculating the %age of CPU used by a process.
157 */
158#define	CCPU_SHIFT	11
159
160/*
161 * Recompute process priorities, every hz ticks.
162 */
163/* ARGSUSED */
164void
165schedcpu(arg)
166	void *arg;
167{
168	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
169	register struct proc *p;
170	register int s;
171	register unsigned int newcpu;
172
173	wakeup((caddr_t)&lbolt);
174	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
175		/*
176		 * Increment time in/out of memory and sleep time
177		 * (if sleeping).  We ignore overflow; with 16-bit int's
178		 * (remember them?) overflow takes 45 days.
179		 */
180		p->p_swtime++;
181		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
182			p->p_slptime++;
183		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
184		/*
185		 * If the process has slept the entire second,
186		 * stop recalculating its priority until it wakes up.
187		 */
188		if (p->p_slptime > 1)
189			continue;
190		s = splstatclock();	/* prevent state changes */
191		/*
192		 * p_pctcpu is only for ps.
193		 */
194#if	(FSHIFT >= CCPU_SHIFT)
195		p->p_pctcpu += (hz == 100)?
196			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
197                	100 * (((fixpt_t) p->p_cpticks)
198				<< (FSHIFT - CCPU_SHIFT)) / hz;
199#else
200		p->p_pctcpu += ((FSCALE - ccpu) *
201			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
202#endif
203		p->p_cpticks = 0;
204		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
205		p->p_estcpu = min(newcpu, UCHAR_MAX);
206		resetpriority(p);
207		if (p->p_priority >= PUSER) {
208#define	PPQ	(128 / NQS)		/* priorities per queue */
209			if ((p != curproc) &&
210			    p->p_stat == SRUN &&
211			    (p->p_flag & P_INMEM) &&
212			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
213				remrq(p);
214				p->p_priority = p->p_usrpri;
215				setrunqueue(p);
216			} else
217				p->p_priority = p->p_usrpri;
218		}
219		splx(s);
220	}
221	vmmeter();
222	timeout(schedcpu, (void *)0, hz);
223}
224
225/*
226 * Recalculate the priority of a process after it has slept for a while.
227 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
228 * least six times the loadfactor will decay p_estcpu to zero.
229 */
230void
231updatepri(p)
232	register struct proc *p;
233{
234	register unsigned int newcpu = p->p_estcpu;
235	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
236
237	if (p->p_slptime > 5 * loadfac)
238		p->p_estcpu = 0;
239	else {
240		p->p_slptime--;	/* the first time was done in schedcpu */
241		while (newcpu && --p->p_slptime)
242			newcpu = (int) decay_cpu(loadfac, newcpu);
243		p->p_estcpu = min(newcpu, UCHAR_MAX);
244	}
245	resetpriority(p);
246}
247
248/*
249 * We're only looking at 7 bits of the address; everything is
250 * aligned to 4, lots of things are aligned to greater powers
251 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
252 */
253#define TABLESIZE	128
254#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
255struct slpque {
256	struct proc *sq_head;
257	struct proc **sq_tailp;
258} slpque[TABLESIZE];
259
260/*
261 * During autoconfiguration or after a panic, a sleep will simply
262 * lower the priority briefly to allow interrupts, then return.
263 * The priority to be used (safepri) is machine-dependent, thus this
264 * value is initialized and maintained in the machine-dependent layers.
265 * This priority will typically be 0, or the lowest priority
266 * that is safe for use on the interrupt stack; it can be made
267 * higher to block network software interrupts after panics.
268 */
269int safepri;
270
271/*
272 * General sleep call.  Suspends the current process until a wakeup is
273 * performed on the specified identifier.  The process will then be made
274 * runnable with the specified priority.  Sleeps at most timo/hz seconds
275 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
276 * before and after sleeping, else signals are not checked.  Returns 0 if
277 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
278 * signal needs to be delivered, ERESTART is returned if the current system
279 * call should be restarted if possible, and EINTR is returned if the system
280 * call should be interrupted by the signal (return EINTR).
281 */
282int
283tsleep(ident, priority, wmesg, timo)
284	void *ident;
285	int priority, timo;
286	char *wmesg;
287{
288	register struct proc *p = curproc;
289	register struct slpque *qp;
290	register s;
291	int sig, catch = priority & PCATCH;
292
293#ifdef KTRACE
294	if (KTRPOINT(p, KTR_CSW))
295		ktrcsw(p->p_tracep, 1, 0);
296#endif
297	s = splhigh();
298	if (cold || panicstr) {
299		/*
300		 * After a panic, or during autoconfiguration,
301		 * just give interrupts a chance, then just return;
302		 * don't run any other procs or panic below,
303		 * in case this is the idle process and already asleep.
304		 */
305		splx(safepri);
306		splx(s);
307		return (0);
308	}
309#ifdef DIAGNOSTIC
310	if (ident == NULL || p->p_stat != SRUN || p->p_back)
311		panic("tsleep");
312#endif
313	p->p_wchan = ident;
314	p->p_wmesg = wmesg;
315	p->p_slptime = 0;
316	p->p_priority = priority & PRIMASK;
317	qp = &slpque[LOOKUP(ident)];
318	if (qp->sq_head == 0)
319		qp->sq_head = p;
320	else
321		*qp->sq_tailp = p;
322	*(qp->sq_tailp = &p->p_forw) = 0;
323	if (timo)
324		timeout(endtsleep, (void *)p, timo);
325	/*
326	 * We put ourselves on the sleep queue and start our timeout
327	 * before calling CURSIG, as we could stop there, and a wakeup
328	 * or a SIGCONT (or both) could occur while we were stopped.
329	 * A SIGCONT would cause us to be marked as SSLEEP
330	 * without resuming us, thus we must be ready for sleep
331	 * when CURSIG is called.  If the wakeup happens while we're
332	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
333	 */
334	if (catch) {
335		p->p_flag |= P_SINTR;
336		if ((sig = CURSIG(p))) {
337			if (p->p_wchan)
338				unsleep(p);
339			p->p_stat = SRUN;
340			goto resume;
341		}
342		if (p->p_wchan == 0) {
343			catch = 0;
344			goto resume;
345		}
346	} else
347		sig = 0;
348	p->p_stat = SSLEEP;
349	p->p_stats->p_ru.ru_nvcsw++;
350	mi_switch();
351resume:
352	curpriority = p->p_usrpri;
353	splx(s);
354	p->p_flag &= ~P_SINTR;
355	if (p->p_flag & P_TIMEOUT) {
356		p->p_flag &= ~P_TIMEOUT;
357		if (sig == 0) {
358#ifdef KTRACE
359			if (KTRPOINT(p, KTR_CSW))
360				ktrcsw(p->p_tracep, 0, 0);
361#endif
362			return (EWOULDBLOCK);
363		}
364	} else if (timo)
365		untimeout(endtsleep, (void *)p);
366	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
367#ifdef KTRACE
368		if (KTRPOINT(p, KTR_CSW))
369			ktrcsw(p->p_tracep, 0, 0);
370#endif
371		if (p->p_sigacts->ps_sigintr & sigmask(sig))
372			return (EINTR);
373		return (ERESTART);
374	}
375#ifdef KTRACE
376	if (KTRPOINT(p, KTR_CSW))
377		ktrcsw(p->p_tracep, 0, 0);
378#endif
379	return (0);
380}
381
382/*
383 * Implement timeout for tsleep.
384 * If process hasn't been awakened (wchan non-zero),
385 * set timeout flag and undo the sleep.  If proc
386 * is stopped, just unsleep so it will remain stopped.
387 */
388void
389endtsleep(arg)
390	void *arg;
391{
392	register struct proc *p;
393	int s;
394
395	p = (struct proc *)arg;
396	s = splhigh();
397	if (p->p_wchan) {
398		if (p->p_stat == SSLEEP)
399			setrunnable(p);
400		else
401			unsleep(p);
402		p->p_flag |= P_TIMEOUT;
403	}
404	splx(s);
405}
406
407/*
408 * Short-term, non-interruptable sleep.
409 */
410void
411sleep(ident, priority)
412	void *ident;
413	int priority;
414{
415	register struct proc *p = curproc;
416	register struct slpque *qp;
417	register s;
418
419#ifdef DIAGNOSTIC
420	if (priority > PZERO) {
421		printf("sleep called with priority %d > PZERO, wchan: %p\n",
422		    priority, ident);
423		panic("old sleep");
424	}
425#endif
426	s = splhigh();
427	if (cold || panicstr) {
428		/*
429		 * After a panic, or during autoconfiguration,
430		 * just give interrupts a chance, then just return;
431		 * don't run any other procs or panic below,
432		 * in case this is the idle process and already asleep.
433		 */
434		splx(safepri);
435		splx(s);
436		return;
437	}
438#ifdef DIAGNOSTIC
439	if (ident == NULL || p->p_stat != SRUN || p->p_back)
440		panic("sleep");
441#endif
442	p->p_wchan = ident;
443	p->p_wmesg = NULL;
444	p->p_slptime = 0;
445	p->p_priority = priority;
446	qp = &slpque[LOOKUP(ident)];
447	if (qp->sq_head == 0)
448		qp->sq_head = p;
449	else
450		*qp->sq_tailp = p;
451	*(qp->sq_tailp = &p->p_forw) = 0;
452	p->p_stat = SSLEEP;
453	p->p_stats->p_ru.ru_nvcsw++;
454#ifdef KTRACE
455	if (KTRPOINT(p, KTR_CSW))
456		ktrcsw(p->p_tracep, 1, 0);
457#endif
458	mi_switch();
459#ifdef KTRACE
460	if (KTRPOINT(p, KTR_CSW))
461		ktrcsw(p->p_tracep, 0, 0);
462#endif
463	curpriority = p->p_usrpri;
464	splx(s);
465}
466
467/*
468 * Remove a process from its wait queue
469 */
470void
471unsleep(p)
472	register struct proc *p;
473{
474	register struct slpque *qp;
475	register struct proc **hp;
476	int s;
477
478	s = splhigh();
479	if (p->p_wchan) {
480		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
481		while (*hp != p)
482			hp = &(*hp)->p_forw;
483		*hp = p->p_forw;
484		if (qp->sq_tailp == &p->p_forw)
485			qp->sq_tailp = hp;
486		p->p_wchan = 0;
487	}
488	splx(s);
489}
490
491/*
492 * Make all processes sleeping on the specified identifier runnable.
493 */
494void
495wakeup(ident)
496	register void *ident;
497{
498	register struct slpque *qp;
499	register struct proc *p, **q;
500	int s;
501
502	s = splhigh();
503	qp = &slpque[LOOKUP(ident)];
504restart:
505	for (q = &qp->sq_head; *q; ) {
506		p = *q;
507#ifdef DIAGNOSTIC
508		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
509			panic("wakeup");
510#endif
511		if (p->p_wchan == ident) {
512			p->p_wchan = 0;
513			*q = p->p_forw;
514			if (qp->sq_tailp == &p->p_forw)
515				qp->sq_tailp = q;
516			if (p->p_stat == SSLEEP) {
517				/* OPTIMIZED EXPANSION OF setrunnable(p); */
518				if (p->p_slptime > 1)
519					updatepri(p);
520				p->p_slptime = 0;
521				p->p_stat = SRUN;
522				if (p->p_flag & P_INMEM)
523					setrunqueue(p);
524				/*
525				 * Since curpriority is a user priority,
526				 * p->p_priority is always better than
527				 * curpriority.
528				 */
529				if ((p->p_flag & P_INMEM) == 0)
530					wakeup((caddr_t)&proc0);
531				else
532					need_resched();
533				/* END INLINE EXPANSION */
534				goto restart;
535			}
536		} else
537			q = &p->p_forw;
538	}
539	splx(s);
540}
541
542/*
543 * The machine independent parts of mi_switch().
544 * Must be called at splstatclock() or higher.
545 */
546void
547mi_switch()
548{
549	register struct proc *p = curproc;	/* XXX */
550	register struct rlimit *rlim;
551	register long s, u;
552	struct timeval tv;
553
554	/*
555	 * Compute the amount of time during which the current
556	 * process was running, and add that to its total so far.
557	 */
558	microtime(&tv);
559	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
560	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
561	if (u < 0) {
562		u += 1000000;
563		s--;
564	} else if (u >= 1000000) {
565		u -= 1000000;
566		s++;
567	}
568	p->p_rtime.tv_usec = u;
569	p->p_rtime.tv_sec = s;
570
571	/*
572	 * Check if the process exceeds its cpu resource allocation.
573	 * If over max, kill it.  In any case, if it has run for more
574	 * than 10 minutes, reduce priority to give others a chance.
575	 */
576	if (p->p_stat != SZOMB) {
577		rlim = &p->p_rlimit[RLIMIT_CPU];
578		if (s >= rlim->rlim_cur) {
579			if (s >= rlim->rlim_max)
580				psignal(p, SIGKILL);
581			else {
582				psignal(p, SIGXCPU);
583				if (rlim->rlim_cur < rlim->rlim_max)
584					rlim->rlim_cur += 5;
585			}
586		}
587		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
588			p->p_nice = NZERO + 4;
589			resetpriority(p);
590		}
591	}
592
593	/*
594	 * Pick a new current process and record its start time.
595	 */
596	cnt.v_swtch++;
597	cpu_switch(p);
598	microtime(&runtime);
599}
600
601/*
602 * Initialize the (doubly-linked) run queues
603 * to be empty.
604 */
605void
606rqinit()
607{
608	register int i;
609
610	for (i = 0; i < NQS; i++) {
611		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
612		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
613		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
614	}
615}
616
617/*
618 * Change process state to be runnable,
619 * placing it on the run queue if it is in memory,
620 * and awakening the swapper if it isn't in memory.
621 */
622void
623setrunnable(p)
624	register struct proc *p;
625{
626	register int s;
627
628	s = splhigh();
629	switch (p->p_stat) {
630	case 0:
631	case SRUN:
632	case SZOMB:
633	default:
634		panic("setrunnable");
635	case SSTOP:
636	case SSLEEP:
637		unsleep(p);		/* e.g. when sending signals */
638		break;
639
640	case SIDL:
641		break;
642	}
643	p->p_stat = SRUN;
644	if (p->p_flag & P_INMEM)
645		setrunqueue(p);
646	splx(s);
647	if (p->p_slptime > 1)
648		updatepri(p);
649	p->p_slptime = 0;
650	if ((p->p_flag & P_INMEM) == 0)
651		wakeup((caddr_t)&proc0);
652	else if (p->p_priority < curpriority)
653		need_resched();
654}
655
656/*
657 * Compute the priority of a process when running in user mode.
658 * Arrange to reschedule if the resulting priority is better
659 * than that of the current process.
660 */
661void
662resetpriority(p)
663	register struct proc *p;
664{
665	register unsigned int newpriority;
666
667	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
668		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
669		newpriority = min(newpriority, MAXPRI);
670		p->p_usrpri = newpriority;
671		if (newpriority < curpriority)
672			need_resched();
673	} else {
674		need_resched();
675	}
676}
677