kern_synch.c revision 68792
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 68792 2000-11-15 22:27:38Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/ipl.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/mutex.h>
51#include <sys/signalvar.h>
52#include <sys/resourcevar.h>
53#include <sys/vmmeter.h>
54#include <sys/sysctl.h>
55#include <vm/vm.h>
56#include <vm/vm_extern.h>
57#ifdef KTRACE
58#include <sys/uio.h>
59#include <sys/ktrace.h>
60#endif
61
62#include <machine/cpu.h>
63#include <machine/smp.h>
64
65static void sched_setup __P((void *dummy));
66SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
67
68u_char	curpriority;
69int	hogticks;
70int	lbolt;
71int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
72
73static int	curpriority_cmp __P((struct proc *p));
74static void	endtsleep __P((void *));
75static void	maybe_resched __P((struct proc *chk));
76static void	roundrobin __P((void *arg));
77static void	schedcpu __P((void *arg));
78static void	updatepri __P((struct proc *p));
79
80static int
81sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
82{
83	int error, new_val;
84
85	new_val = sched_quantum * tick;
86	error = sysctl_handle_int(oidp, &new_val, 0, req);
87        if (error != 0 || req->newptr == NULL)
88		return (error);
89	if (new_val < tick)
90		return (EINVAL);
91	sched_quantum = new_val / tick;
92	hogticks = 2 * sched_quantum;
93	return (0);
94}
95
96SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
97	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
98
99/*-
100 * Compare priorities.  Return:
101 *     <0: priority of p < current priority
102 *      0: priority of p == current priority
103 *     >0: priority of p > current priority
104 * The priorities are the normal priorities or the normal realtime priorities
105 * if p is on the same scheduler as curproc.  Otherwise the process on the
106 * more realtimeish scheduler has lowest priority.  As usual, a higher
107 * priority really means a lower priority.
108 */
109static int
110curpriority_cmp(p)
111	struct proc *p;
112{
113	int c_class, p_class;
114
115	c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
116	p_class = RTP_PRIO_BASE(p->p_rtprio.type);
117	if (p_class != c_class)
118		return (p_class - c_class);
119	if (p_class == RTP_PRIO_NORMAL)
120		return (((int)p->p_priority - (int)curpriority) / PPQ);
121	return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
122}
123
124/*
125 * Arrange to reschedule if necessary, taking the priorities and
126 * schedulers into account.
127 */
128static void
129maybe_resched(chk)
130	struct proc *chk;
131{
132	struct proc *p = curproc; /* XXX */
133
134	/*
135	 * XXX idle scheduler still broken because proccess stays on idle
136	 * scheduler during waits (such as when getting FS locks).  If a
137	 * standard process becomes runaway cpu-bound, the system can lockup
138	 * due to idle-scheduler processes in wakeup never getting any cpu.
139	 */
140	if (p == idleproc) {
141#if 0
142		need_resched();
143#endif
144	} else if (chk == p) {
145		/* We may need to yield if our priority has been raised. */
146		if (curpriority_cmp(chk) > 0)
147			need_resched();
148	} else if (curpriority_cmp(chk) < 0)
149		need_resched();
150}
151
152int
153roundrobin_interval(void)
154{
155	return (sched_quantum);
156}
157
158/*
159 * Force switch among equal priority processes every 100ms.
160 */
161/* ARGSUSED */
162static void
163roundrobin(arg)
164	void *arg;
165{
166#ifndef SMP
167 	struct proc *p = curproc; /* XXX */
168#endif
169
170#ifdef SMP
171	need_resched();
172	forward_roundrobin();
173#else
174 	if (p == idleproc || RTP_PRIO_NEED_RR(p->p_rtprio.type))
175 		need_resched();
176#endif
177
178 	timeout(roundrobin, NULL, sched_quantum);
179}
180
181/*
182 * Constants for digital decay and forget:
183 *	90% of (p_estcpu) usage in 5 * loadav time
184 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
185 *          Note that, as ps(1) mentions, this can let percentages
186 *          total over 100% (I've seen 137.9% for 3 processes).
187 *
188 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
189 *
190 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
191 * That is, the system wants to compute a value of decay such
192 * that the following for loop:
193 * 	for (i = 0; i < (5 * loadavg); i++)
194 * 		p_estcpu *= decay;
195 * will compute
196 * 	p_estcpu *= 0.1;
197 * for all values of loadavg:
198 *
199 * Mathematically this loop can be expressed by saying:
200 * 	decay ** (5 * loadavg) ~= .1
201 *
202 * The system computes decay as:
203 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
204 *
205 * We wish to prove that the system's computation of decay
206 * will always fulfill the equation:
207 * 	decay ** (5 * loadavg) ~= .1
208 *
209 * If we compute b as:
210 * 	b = 2 * loadavg
211 * then
212 * 	decay = b / (b + 1)
213 *
214 * We now need to prove two things:
215 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
216 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
217 *
218 * Facts:
219 *         For x close to zero, exp(x) =~ 1 + x, since
220 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
221 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
222 *         For x close to zero, ln(1+x) =~ x, since
223 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
224 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
225 *         ln(.1) =~ -2.30
226 *
227 * Proof of (1):
228 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
229 *	solving for factor,
230 *      ln(factor) =~ (-2.30/5*loadav), or
231 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
232 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
233 *
234 * Proof of (2):
235 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
236 *	solving for power,
237 *      power*ln(b/(b+1)) =~ -2.30, or
238 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
239 *
240 * Actual power values for the implemented algorithm are as follows:
241 *      loadav: 1       2       3       4
242 *      power:  5.68    10.32   14.94   19.55
243 */
244
245/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
246#define	loadfactor(loadav)	(2 * (loadav))
247#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
248
249/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
250static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
251SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
252
253/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
254static int	fscale __unused = FSCALE;
255SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
256
257/*
258 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
259 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
260 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
261 *
262 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
263 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
264 *
265 * If you don't want to bother with the faster/more-accurate formula, you
266 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
267 * (more general) method of calculating the %age of CPU used by a process.
268 */
269#define	CCPU_SHIFT	11
270
271/*
272 * Recompute process priorities, every hz ticks.
273 */
274/* ARGSUSED */
275static void
276schedcpu(arg)
277	void *arg;
278{
279	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
280	register struct proc *p;
281	register int realstathz, s;
282
283	realstathz = stathz ? stathz : hz;
284	LIST_FOREACH(p, &allproc, p_list) {
285		/*
286		 * Increment time in/out of memory and sleep time
287		 * (if sleeping).  We ignore overflow; with 16-bit int's
288		 * (remember them?) overflow takes 45 days.
289		if (p->p_stat == SWAIT)
290			continue;
291		 */
292		mtx_enter(&sched_lock, MTX_SPIN);
293		p->p_swtime++;
294		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
295			p->p_slptime++;
296		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
297		/*
298		 * If the process has slept the entire second,
299		 * stop recalculating its priority until it wakes up.
300		 */
301		if (p->p_slptime > 1) {
302			mtx_exit(&sched_lock, MTX_SPIN);
303			continue;
304		}
305
306		/*
307		 * prevent state changes and protect run queue
308		 */
309		s = splhigh();
310
311		/*
312		 * p_pctcpu is only for ps.
313		 */
314#if	(FSHIFT >= CCPU_SHIFT)
315		p->p_pctcpu += (realstathz == 100)?
316			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
317                	100 * (((fixpt_t) p->p_cpticks)
318				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
319#else
320		p->p_pctcpu += ((FSCALE - ccpu) *
321			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
322#endif
323		p->p_cpticks = 0;
324		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
325		resetpriority(p);
326		if (p->p_priority >= PUSER) {
327			if ((p != curproc) &&
328#ifdef SMP
329			    p->p_oncpu == 0xff && 	/* idle */
330#endif
331			    p->p_stat == SRUN &&
332			    (p->p_flag & P_INMEM) &&
333			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
334				remrunqueue(p);
335				p->p_priority = p->p_usrpri;
336				setrunqueue(p);
337			} else
338				p->p_priority = p->p_usrpri;
339		}
340		mtx_exit(&sched_lock, MTX_SPIN);
341		splx(s);
342	}
343	vmmeter();
344	wakeup((caddr_t)&lbolt);
345	timeout(schedcpu, (void *)0, hz);
346}
347
348/*
349 * Recalculate the priority of a process after it has slept for a while.
350 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
351 * least six times the loadfactor will decay p_estcpu to zero.
352 */
353static void
354updatepri(p)
355	register struct proc *p;
356{
357	register unsigned int newcpu = p->p_estcpu;
358	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
359
360	if (p->p_slptime > 5 * loadfac)
361		p->p_estcpu = 0;
362	else {
363		p->p_slptime--;	/* the first time was done in schedcpu */
364		while (newcpu && --p->p_slptime)
365			newcpu = decay_cpu(loadfac, newcpu);
366		p->p_estcpu = newcpu;
367	}
368	resetpriority(p);
369}
370
371/*
372 * We're only looking at 7 bits of the address; everything is
373 * aligned to 4, lots of things are aligned to greater powers
374 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
375 */
376#define TABLESIZE	128
377static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
378#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
379
380void
381sleepinit(void)
382{
383	int i;
384
385	sched_quantum = hz/10;
386	hogticks = 2 * sched_quantum;
387	for (i = 0; i < TABLESIZE; i++)
388		TAILQ_INIT(&slpque[i]);
389}
390
391/*
392 * General sleep call.  Suspends the current process until a wakeup is
393 * performed on the specified identifier.  The process will then be made
394 * runnable with the specified priority.  Sleeps at most timo/hz seconds
395 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
396 * before and after sleeping, else signals are not checked.  Returns 0 if
397 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
398 * signal needs to be delivered, ERESTART is returned if the current system
399 * call should be restarted if possible, and EINTR is returned if the system
400 * call should be interrupted by the signal (return EINTR).
401 *
402 * The mutex argument is exited before the caller is suspended, and
403 * entered before msleep returns.  If priority includes the PDROP
404 * flag the mutex is not entered before returning.
405 */
406int
407msleep(ident, mtx, priority, wmesg, timo)
408	void *ident;
409	struct mtx *mtx;
410	int priority, timo;
411	const char *wmesg;
412{
413	struct proc *p = curproc;
414	int s, sig, catch = priority & PCATCH;
415	struct callout_handle thandle;
416	int rval = 0;
417	WITNESS_SAVE_DECL(mtx);
418
419#ifdef KTRACE
420	if (p && KTRPOINT(p, KTR_CSW))
421		ktrcsw(p->p_tracep, 1, 0);
422#endif
423	WITNESS_SLEEP(0, mtx);
424	mtx_enter(&sched_lock, MTX_SPIN);
425
426	if (mtx != NULL) {
427		KASSERT(mtx->mtx_recurse == 0,
428		    ("sleeping on recursed mutex %s", mtx->mtx_description));
429		WITNESS_SAVE(mtx, mtx);
430		mtx_exit(mtx, MTX_DEF | MTX_NOSWITCH);
431		if (priority & PDROP)
432			mtx = NULL;
433	}
434
435	s = splhigh();
436	if (cold || panicstr) {
437		/*
438		 * After a panic, or during autoconfiguration,
439		 * just give interrupts a chance, then just return;
440		 * don't run any other procs or panic below,
441		 * in case this is the idle process and already asleep.
442		 */
443		mtx_exit(&sched_lock, MTX_SPIN);
444		splx(s);
445		return (0);
446	}
447
448	KASSERT(p != NULL, ("msleep1"));
449	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
450	/*
451	 * Process may be sitting on a slpque if asleep() was called, remove
452	 * it before re-adding.
453	 */
454	if (p->p_wchan != NULL)
455		unsleep(p);
456
457	p->p_wchan = ident;
458	p->p_wmesg = wmesg;
459	p->p_slptime = 0;
460	p->p_priority = priority & PRIMASK;
461	p->p_nativepri = p->p_priority;
462	CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
463		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
464	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
465	if (timo)
466		thandle = timeout(endtsleep, (void *)p, timo);
467	/*
468	 * We put ourselves on the sleep queue and start our timeout
469	 * before calling CURSIG, as we could stop there, and a wakeup
470	 * or a SIGCONT (or both) could occur while we were stopped.
471	 * A SIGCONT would cause us to be marked as SSLEEP
472	 * without resuming us, thus we must be ready for sleep
473	 * when CURSIG is called.  If the wakeup happens while we're
474	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
475	 */
476	if (catch) {
477		CTR4(KTR_PROC,
478		        "msleep caught: proc %p (pid %d, %s), schedlock %p",
479			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
480		p->p_flag |= P_SINTR;
481		if ((sig = CURSIG(p))) {
482			if (p->p_wchan)
483				unsleep(p);
484			p->p_stat = SRUN;
485			goto resume;
486		}
487		if (p->p_wchan == 0) {
488			catch = 0;
489			goto resume;
490		}
491	} else
492		sig = 0;
493	p->p_stat = SSLEEP;
494	p->p_stats->p_ru.ru_nvcsw++;
495	mi_switch();
496	CTR4(KTR_PROC,
497	        "msleep resume: proc %p (pid %d, %s), schedlock %p",
498		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
499resume:
500	curpriority = p->p_usrpri;
501	splx(s);
502	p->p_flag &= ~P_SINTR;
503	if (p->p_flag & P_TIMEOUT) {
504		p->p_flag &= ~P_TIMEOUT;
505		if (sig == 0) {
506#ifdef KTRACE
507			if (KTRPOINT(p, KTR_CSW))
508				ktrcsw(p->p_tracep, 0, 0);
509#endif
510			rval = EWOULDBLOCK;
511			goto out;
512		}
513	} else if (timo)
514		untimeout(endtsleep, (void *)p, thandle);
515	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
516#ifdef KTRACE
517		if (KTRPOINT(p, KTR_CSW))
518			ktrcsw(p->p_tracep, 0, 0);
519#endif
520		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
521			rval = EINTR;
522		else
523			rval = ERESTART;
524		goto out;
525	}
526out:
527	mtx_exit(&sched_lock, MTX_SPIN);
528#ifdef KTRACE
529	if (KTRPOINT(p, KTR_CSW))
530		ktrcsw(p->p_tracep, 0, 0);
531#endif
532	if (mtx != NULL) {
533		mtx_enter(mtx, MTX_DEF);
534		WITNESS_RESTORE(mtx, mtx);
535	}
536	return (rval);
537}
538
539/*
540 * asleep() - async sleep call.  Place process on wait queue and return
541 * immediately without blocking.  The process stays runnable until await()
542 * is called.  If ident is NULL, remove process from wait queue if it is still
543 * on one.
544 *
545 * Only the most recent sleep condition is effective when making successive
546 * calls to asleep() or when calling msleep().
547 *
548 * The timeout, if any, is not initiated until await() is called.  The sleep
549 * priority, signal, and timeout is specified in the asleep() call but may be
550 * overriden in the await() call.
551 *
552 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
553 */
554
555int
556asleep(void *ident, int priority, const char *wmesg, int timo)
557{
558	struct proc *p = curproc;
559	int s;
560
561	/*
562	 * obtain sched_lock while manipulating sleep structures and slpque.
563	 *
564	 * Remove preexisting wait condition (if any) and place process
565	 * on appropriate slpque, but do not put process to sleep.
566	 */
567
568	s = splhigh();
569	mtx_enter(&sched_lock, MTX_SPIN);
570
571	if (p->p_wchan != NULL)
572		unsleep(p);
573
574	if (ident) {
575		p->p_wchan = ident;
576		p->p_wmesg = wmesg;
577		p->p_slptime = 0;
578		p->p_asleep.as_priority = priority;
579		p->p_asleep.as_timo = timo;
580		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
581	}
582
583	mtx_exit(&sched_lock, MTX_SPIN);
584	splx(s);
585
586	return(0);
587}
588
589/*
590 * await() - wait for async condition to occur.   The process blocks until
591 * wakeup() is called on the most recent asleep() address.  If wakeup is called
592 * prior to await(), await() winds up being a NOP.
593 *
594 * If await() is called more then once (without an intervening asleep() call),
595 * await() is still effectively a NOP but it calls mi_switch() to give other
596 * processes some cpu before returning.  The process is left runnable.
597 *
598 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
599 */
600
601int
602await(int priority, int timo)
603{
604	struct proc *p = curproc;
605	int rval = 0;
606	int s;
607
608	mtx_enter(&sched_lock, MTX_SPIN);
609
610	s = splhigh();
611
612	if (p->p_wchan != NULL) {
613		struct callout_handle thandle;
614		int sig;
615		int catch;
616
617		/*
618		 * The call to await() can override defaults specified in
619		 * the original asleep().
620		 */
621		if (priority < 0)
622			priority = p->p_asleep.as_priority;
623		if (timo < 0)
624			timo = p->p_asleep.as_timo;
625
626		/*
627		 * Install timeout
628		 */
629
630		if (timo)
631			thandle = timeout(endtsleep, (void *)p, timo);
632
633		sig = 0;
634		catch = priority & PCATCH;
635
636		if (catch) {
637			p->p_flag |= P_SINTR;
638			if ((sig = CURSIG(p))) {
639				if (p->p_wchan)
640					unsleep(p);
641				p->p_stat = SRUN;
642				goto resume;
643			}
644			if (p->p_wchan == NULL) {
645				catch = 0;
646				goto resume;
647			}
648		}
649		p->p_stat = SSLEEP;
650		p->p_stats->p_ru.ru_nvcsw++;
651		mi_switch();
652resume:
653		curpriority = p->p_usrpri;
654
655		splx(s);
656		p->p_flag &= ~P_SINTR;
657		if (p->p_flag & P_TIMEOUT) {
658			p->p_flag &= ~P_TIMEOUT;
659			if (sig == 0) {
660#ifdef KTRACE
661				if (KTRPOINT(p, KTR_CSW))
662					ktrcsw(p->p_tracep, 0, 0);
663#endif
664				rval = EWOULDBLOCK;
665				goto out;
666			}
667		} else if (timo)
668			untimeout(endtsleep, (void *)p, thandle);
669		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
670#ifdef KTRACE
671			if (KTRPOINT(p, KTR_CSW))
672				ktrcsw(p->p_tracep, 0, 0);
673#endif
674			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
675				rval = EINTR;
676			else
677				rval = ERESTART;
678			goto out;
679		}
680#ifdef KTRACE
681		if (KTRPOINT(p, KTR_CSW))
682			ktrcsw(p->p_tracep, 0, 0);
683#endif
684	} else {
685		/*
686		 * If as_priority is 0, await() has been called without an
687		 * intervening asleep().  We are still effectively a NOP,
688		 * but we call mi_switch() for safety.
689		 */
690
691		if (p->p_asleep.as_priority == 0) {
692			p->p_stats->p_ru.ru_nvcsw++;
693			mi_switch();
694		}
695		splx(s);
696	}
697
698	/*
699	 * clear p_asleep.as_priority as an indication that await() has been
700	 * called.  If await() is called again without an intervening asleep(),
701	 * await() is still effectively a NOP but the above mi_switch() code
702	 * is triggered as a safety.
703	 */
704	p->p_asleep.as_priority = 0;
705
706out:
707	mtx_exit(&sched_lock, MTX_SPIN);
708
709	return (rval);
710}
711
712/*
713 * Implement timeout for msleep or asleep()/await()
714 *
715 * If process hasn't been awakened (wchan non-zero),
716 * set timeout flag and undo the sleep.  If proc
717 * is stopped, just unsleep so it will remain stopped.
718 */
719static void
720endtsleep(arg)
721	void *arg;
722{
723	register struct proc *p;
724	int s;
725
726	p = (struct proc *)arg;
727	CTR4(KTR_PROC,
728	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
729		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
730	s = splhigh();
731	mtx_enter(&sched_lock, MTX_SPIN);
732	if (p->p_wchan) {
733		if (p->p_stat == SSLEEP)
734			setrunnable(p);
735		else
736			unsleep(p);
737		p->p_flag |= P_TIMEOUT;
738	}
739	mtx_exit(&sched_lock, MTX_SPIN);
740	splx(s);
741}
742
743/*
744 * Remove a process from its wait queue
745 */
746void
747unsleep(p)
748	register struct proc *p;
749{
750	int s;
751
752	s = splhigh();
753	mtx_enter(&sched_lock, MTX_SPIN);
754	if (p->p_wchan) {
755		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
756		p->p_wchan = 0;
757	}
758	mtx_exit(&sched_lock, MTX_SPIN);
759	splx(s);
760}
761
762/*
763 * Make all processes sleeping on the specified identifier runnable.
764 */
765void
766wakeup(ident)
767	register void *ident;
768{
769	register struct slpquehead *qp;
770	register struct proc *p;
771	int s;
772
773	s = splhigh();
774	mtx_enter(&sched_lock, MTX_SPIN);
775	qp = &slpque[LOOKUP(ident)];
776restart:
777	TAILQ_FOREACH(p, qp, p_procq) {
778		if (p->p_wchan == ident) {
779			TAILQ_REMOVE(qp, p, p_procq);
780			p->p_wchan = 0;
781			if (p->p_stat == SSLEEP) {
782				/* OPTIMIZED EXPANSION OF setrunnable(p); */
783				CTR4(KTR_PROC,
784				        "wakeup: proc %p (pid %d, %s), schedlock %p",
785					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
786				if (p->p_slptime > 1)
787					updatepri(p);
788				p->p_slptime = 0;
789				p->p_stat = SRUN;
790				if (p->p_flag & P_INMEM) {
791					setrunqueue(p);
792					maybe_resched(p);
793				} else {
794					p->p_flag |= P_SWAPINREQ;
795					wakeup((caddr_t)&proc0);
796				}
797				/* END INLINE EXPANSION */
798				goto restart;
799			}
800		}
801	}
802	mtx_exit(&sched_lock, MTX_SPIN);
803	splx(s);
804}
805
806/*
807 * Make a process sleeping on the specified identifier runnable.
808 * May wake more than one process if a target process is currently
809 * swapped out.
810 */
811void
812wakeup_one(ident)
813	register void *ident;
814{
815	register struct slpquehead *qp;
816	register struct proc *p;
817	int s;
818
819	s = splhigh();
820	mtx_enter(&sched_lock, MTX_SPIN);
821	qp = &slpque[LOOKUP(ident)];
822
823	TAILQ_FOREACH(p, qp, p_procq) {
824		if (p->p_wchan == ident) {
825			TAILQ_REMOVE(qp, p, p_procq);
826			p->p_wchan = 0;
827			if (p->p_stat == SSLEEP) {
828				/* OPTIMIZED EXPANSION OF setrunnable(p); */
829				CTR4(KTR_PROC,
830				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
831					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
832				if (p->p_slptime > 1)
833					updatepri(p);
834				p->p_slptime = 0;
835				p->p_stat = SRUN;
836				if (p->p_flag & P_INMEM) {
837					setrunqueue(p);
838					maybe_resched(p);
839					break;
840				} else {
841					p->p_flag |= P_SWAPINREQ;
842					wakeup((caddr_t)&proc0);
843				}
844				/* END INLINE EXPANSION */
845			}
846		}
847	}
848	mtx_exit(&sched_lock, MTX_SPIN);
849	splx(s);
850}
851
852/*
853 * The machine independent parts of mi_switch().
854 * Must be called at splstatclock() or higher.
855 */
856void
857mi_switch()
858{
859	struct timeval new_switchtime;
860	register struct proc *p = curproc;	/* XXX */
861	register struct rlimit *rlim;
862	int giantreleased;
863	int x;
864	WITNESS_SAVE_DECL(Giant);
865
866	/*
867	 * XXX this spl is almost unnecessary.  It is partly to allow for
868	 * sloppy callers that don't do it (issignal() via CURSIG() is the
869	 * main offender).  It is partly to work around a bug in the i386
870	 * cpu_switch() (the ipl is not preserved).  We ran for years
871	 * without it.  I think there was only a interrupt latency problem.
872	 * The main caller, msleep(), does an splx() a couple of instructions
873	 * after calling here.  The buggy caller, issignal(), usually calls
874	 * here at spl0() and sometimes returns at splhigh().  The process
875	 * then runs for a little too long at splhigh().  The ipl gets fixed
876	 * when the process returns to user mode (or earlier).
877	 *
878	 * It would probably be better to always call here at spl0(). Callers
879	 * are prepared to give up control to another process, so they must
880	 * be prepared to be interrupted.  The clock stuff here may not
881	 * actually need splstatclock().
882	 */
883	x = splstatclock();
884
885	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
886		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
887	mtx_enter(&sched_lock, MTX_SPIN | MTX_RLIKELY);
888
889	if (mtx_owned(&Giant))
890		WITNESS_SAVE(&Giant, Giant);
891	for (giantreleased = 0; mtx_owned(&Giant); giantreleased++)
892		mtx_exit(&Giant, MTX_DEF | MTX_NOSWITCH);
893
894#ifdef SIMPLELOCK_DEBUG
895	if (p->p_simple_locks)
896		printf("sleep: holding simple lock\n");
897#endif
898	/*
899	 * Compute the amount of time during which the current
900	 * process was running, and add that to its total so far.
901	 */
902	microuptime(&new_switchtime);
903	if (timevalcmp(&new_switchtime, &switchtime, <)) {
904		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
905		    switchtime.tv_sec, switchtime.tv_usec,
906		    new_switchtime.tv_sec, new_switchtime.tv_usec);
907		new_switchtime = switchtime;
908	} else {
909		p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) +
910		    (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
911	}
912
913	/*
914	 * Check if the process exceeds its cpu resource allocation.
915	 * If over max, kill it.
916	 *
917	 * XXX drop sched_lock, pickup Giant
918	 */
919	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
920	    p->p_runtime > p->p_limit->p_cpulimit) {
921		rlim = &p->p_rlimit[RLIMIT_CPU];
922		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
923			killproc(p, "exceeded maximum CPU limit");
924		} else {
925			psignal(p, SIGXCPU);
926			if (rlim->rlim_cur < rlim->rlim_max) {
927				/* XXX: we should make a private copy */
928				rlim->rlim_cur += 5;
929			}
930		}
931	}
932
933	/*
934	 * Pick a new current process and record its start time.
935	 */
936	cnt.v_swtch++;
937	switchtime = new_switchtime;
938	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
939		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
940	cpu_switch();
941	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
942		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
943	if (switchtime.tv_sec == 0)
944		microuptime(&switchtime);
945	switchticks = ticks;
946	mtx_exit(&sched_lock, MTX_SPIN);
947	while (giantreleased--)
948		mtx_enter(&Giant, MTX_DEF);
949	if (mtx_owned(&Giant))
950		WITNESS_RESTORE(&Giant, Giant);
951
952	splx(x);
953}
954
955/*
956 * Change process state to be runnable,
957 * placing it on the run queue if it is in memory,
958 * and awakening the swapper if it isn't in memory.
959 */
960void
961setrunnable(p)
962	register struct proc *p;
963{
964	register int s;
965
966	s = splhigh();
967	mtx_enter(&sched_lock, MTX_SPIN);
968	switch (p->p_stat) {
969	case 0:
970	case SRUN:
971	case SZOMB:
972	case SWAIT:
973	default:
974		panic("setrunnable");
975	case SSTOP:
976	case SSLEEP:
977		unsleep(p);		/* e.g. when sending signals */
978		break;
979
980	case SIDL:
981		break;
982	}
983	p->p_stat = SRUN;
984	if (p->p_flag & P_INMEM)
985		setrunqueue(p);
986	splx(s);
987	if (p->p_slptime > 1)
988		updatepri(p);
989	p->p_slptime = 0;
990	if ((p->p_flag & P_INMEM) == 0) {
991		p->p_flag |= P_SWAPINREQ;
992		wakeup((caddr_t)&proc0);
993	}
994	else
995		maybe_resched(p);
996	mtx_exit(&sched_lock, MTX_SPIN);
997}
998
999/*
1000 * Compute the priority of a process when running in user mode.
1001 * Arrange to reschedule if the resulting priority is better
1002 * than that of the current process.
1003 */
1004void
1005resetpriority(p)
1006	register struct proc *p;
1007{
1008	register unsigned int newpriority;
1009
1010	mtx_enter(&sched_lock, MTX_SPIN);
1011	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
1012		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
1013		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
1014		newpriority = min(newpriority, MAXPRI);
1015		p->p_usrpri = newpriority;
1016	}
1017	maybe_resched(p);
1018	mtx_exit(&sched_lock, MTX_SPIN);
1019}
1020
1021/* ARGSUSED */
1022static void
1023sched_setup(dummy)
1024	void *dummy;
1025{
1026	/* Kick off timeout driven events by calling first time. */
1027	roundrobin(NULL);
1028	schedcpu(NULL);
1029}
1030
1031/*
1032 * We adjust the priority of the current process.  The priority of
1033 * a process gets worse as it accumulates CPU time.  The cpu usage
1034 * estimator (p_estcpu) is increased here.  resetpriority() will
1035 * compute a different priority each time p_estcpu increases by
1036 * INVERSE_ESTCPU_WEIGHT
1037 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1038 * quite quickly when the process is running (linearly), and decays
1039 * away exponentially, at a rate which is proportionally slower when
1040 * the system is busy.  The basic principle is that the system will
1041 * 90% forget that the process used a lot of CPU time in 5 * loadav
1042 * seconds.  This causes the system to favor processes which haven't
1043 * run much recently, and to round-robin among other processes.
1044 */
1045void
1046schedclock(p)
1047	struct proc *p;
1048{
1049
1050	p->p_cpticks++;
1051	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1052	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1053		resetpriority(p);
1054		if (p->p_priority >= PUSER)
1055			p->p_priority = p->p_usrpri;
1056	}
1057}
1058