kern_synch.c revision 65682
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 65682 2000-09-10 13:34:35Z dfr $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/signalvar.h>
50#include <sys/resourcevar.h>
51#include <sys/vmmeter.h>
52#include <sys/sysctl.h>
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#ifdef KTRACE
56#include <sys/uio.h>
57#include <sys/ktrace.h>
58#endif
59
60#include <machine/cpu.h>
61#include <machine/ipl.h>
62#include <machine/smp.h>
63#include <machine/mutex.h>
64
65static void sched_setup __P((void *dummy));
66SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
67
68u_char	curpriority;
69int	hogticks;
70int	lbolt;
71int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
72
73static int	curpriority_cmp __P((struct proc *p));
74static void	endtsleep __P((void *));
75static void	maybe_resched __P((struct proc *chk));
76static void	roundrobin __P((void *arg));
77static void	schedcpu __P((void *arg));
78static void	updatepri __P((struct proc *p));
79
80static int
81sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
82{
83	int error, new_val;
84
85	new_val = sched_quantum * tick;
86	error = sysctl_handle_int(oidp, &new_val, 0, req);
87        if (error != 0 || req->newptr == NULL)
88		return (error);
89	if (new_val < tick)
90		return (EINVAL);
91	sched_quantum = new_val / tick;
92	hogticks = 2 * sched_quantum;
93	return (0);
94}
95
96SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
97	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
98
99/*-
100 * Compare priorities.  Return:
101 *     <0: priority of p < current priority
102 *      0: priority of p == current priority
103 *     >0: priority of p > current priority
104 * The priorities are the normal priorities or the normal realtime priorities
105 * if p is on the same scheduler as curproc.  Otherwise the process on the
106 * more realtimeish scheduler has lowest priority.  As usual, a higher
107 * priority really means a lower priority.
108 */
109static int
110curpriority_cmp(p)
111	struct proc *p;
112{
113	int c_class, p_class;
114
115	c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
116	p_class = RTP_PRIO_BASE(p->p_rtprio.type);
117	if (p_class != c_class)
118		return (p_class - c_class);
119	if (p_class == RTP_PRIO_NORMAL)
120		return (((int)p->p_priority - (int)curpriority) / PPQ);
121	return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
122}
123
124/*
125 * Arrange to reschedule if necessary, taking the priorities and
126 * schedulers into account.
127 */
128static void
129maybe_resched(chk)
130	struct proc *chk;
131{
132	struct proc *p = curproc; /* XXX */
133
134	/*
135	 * XXX idle scheduler still broken because proccess stays on idle
136	 * scheduler during waits (such as when getting FS locks).  If a
137	 * standard process becomes runaway cpu-bound, the system can lockup
138	 * due to idle-scheduler processes in wakeup never getting any cpu.
139	 */
140	if (p == idleproc) {
141#if 0
142		need_resched();
143#endif
144	} else if (chk == p) {
145		/* We may need to yield if our priority has been raised. */
146		if (curpriority_cmp(chk) > 0)
147			need_resched();
148	} else if (curpriority_cmp(chk) < 0)
149		need_resched();
150}
151
152int
153roundrobin_interval(void)
154{
155	return (sched_quantum);
156}
157
158/*
159 * Force switch among equal priority processes every 100ms.
160 */
161/* ARGSUSED */
162static void
163roundrobin(arg)
164	void *arg;
165{
166#ifndef SMP
167 	struct proc *p = curproc; /* XXX */
168#endif
169
170#ifdef SMP
171	need_resched();
172	forward_roundrobin();
173#else
174 	if (p == idleproc || RTP_PRIO_NEED_RR(p->p_rtprio.type))
175 		need_resched();
176#endif
177
178 	timeout(roundrobin, NULL, sched_quantum);
179}
180
181/*
182 * Constants for digital decay and forget:
183 *	90% of (p_estcpu) usage in 5 * loadav time
184 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
185 *          Note that, as ps(1) mentions, this can let percentages
186 *          total over 100% (I've seen 137.9% for 3 processes).
187 *
188 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
189 *
190 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
191 * That is, the system wants to compute a value of decay such
192 * that the following for loop:
193 * 	for (i = 0; i < (5 * loadavg); i++)
194 * 		p_estcpu *= decay;
195 * will compute
196 * 	p_estcpu *= 0.1;
197 * for all values of loadavg:
198 *
199 * Mathematically this loop can be expressed by saying:
200 * 	decay ** (5 * loadavg) ~= .1
201 *
202 * The system computes decay as:
203 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
204 *
205 * We wish to prove that the system's computation of decay
206 * will always fulfill the equation:
207 * 	decay ** (5 * loadavg) ~= .1
208 *
209 * If we compute b as:
210 * 	b = 2 * loadavg
211 * then
212 * 	decay = b / (b + 1)
213 *
214 * We now need to prove two things:
215 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
216 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
217 *
218 * Facts:
219 *         For x close to zero, exp(x) =~ 1 + x, since
220 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
221 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
222 *         For x close to zero, ln(1+x) =~ x, since
223 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
224 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
225 *         ln(.1) =~ -2.30
226 *
227 * Proof of (1):
228 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
229 *	solving for factor,
230 *      ln(factor) =~ (-2.30/5*loadav), or
231 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
232 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
233 *
234 * Proof of (2):
235 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
236 *	solving for power,
237 *      power*ln(b/(b+1)) =~ -2.30, or
238 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
239 *
240 * Actual power values for the implemented algorithm are as follows:
241 *      loadav: 1       2       3       4
242 *      power:  5.68    10.32   14.94   19.55
243 */
244
245/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
246#define	loadfactor(loadav)	(2 * (loadav))
247#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
248
249/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
250static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
251SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
252
253/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
254static int	fscale __unused = FSCALE;
255SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
256
257/*
258 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
259 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
260 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
261 *
262 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
263 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
264 *
265 * If you don't want to bother with the faster/more-accurate formula, you
266 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
267 * (more general) method of calculating the %age of CPU used by a process.
268 */
269#define	CCPU_SHIFT	11
270
271/*
272 * Recompute process priorities, every hz ticks.
273 */
274/* ARGSUSED */
275static void
276schedcpu(arg)
277	void *arg;
278{
279	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
280	register struct proc *p;
281	register int realstathz, s;
282
283	realstathz = stathz ? stathz : hz;
284	LIST_FOREACH(p, &allproc, p_list) {
285		/*
286		 * Increment time in/out of memory and sleep time
287		 * (if sleeping).  We ignore overflow; with 16-bit int's
288		 * (remember them?) overflow takes 45 days.
289		if (p->p_stat == SWAIT)
290			continue;
291		 */
292		p->p_swtime++;
293		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
294			p->p_slptime++;
295		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
296		/*
297		 * If the process has slept the entire second,
298		 * stop recalculating its priority until it wakes up.
299		 */
300		if (p->p_slptime > 1)
301			continue;
302		/*
303		 * prevent state changes and protect run queue
304		 */
305		s = splhigh();
306		mtx_enter(&sched_lock, MTX_SPIN);
307
308		/*
309		 * p_pctcpu is only for ps.
310		 */
311#if	(FSHIFT >= CCPU_SHIFT)
312		p->p_pctcpu += (realstathz == 100)?
313			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
314                	100 * (((fixpt_t) p->p_cpticks)
315				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
316#else
317		p->p_pctcpu += ((FSCALE - ccpu) *
318			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
319#endif
320		p->p_cpticks = 0;
321		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
322		resetpriority(p);
323		if (p->p_priority >= PUSER) {
324			if ((p != curproc) &&
325#ifdef SMP
326			    p->p_oncpu == 0xff && 	/* idle */
327#endif
328			    p->p_stat == SRUN &&
329			    (p->p_flag & P_INMEM) &&
330			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
331				remrunqueue(p);
332				p->p_priority = p->p_usrpri;
333				setrunqueue(p);
334			} else
335				p->p_priority = p->p_usrpri;
336		}
337		mtx_exit(&sched_lock, MTX_SPIN);
338		splx(s);
339	}
340	vmmeter();
341	wakeup((caddr_t)&lbolt);
342	timeout(schedcpu, (void *)0, hz);
343}
344
345/*
346 * Recalculate the priority of a process after it has slept for a while.
347 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
348 * least six times the loadfactor will decay p_estcpu to zero.
349 */
350static void
351updatepri(p)
352	register struct proc *p;
353{
354	register unsigned int newcpu = p->p_estcpu;
355	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
356
357	if (p->p_slptime > 5 * loadfac)
358		p->p_estcpu = 0;
359	else {
360		p->p_slptime--;	/* the first time was done in schedcpu */
361		while (newcpu && --p->p_slptime)
362			newcpu = decay_cpu(loadfac, newcpu);
363		p->p_estcpu = newcpu;
364	}
365	resetpriority(p);
366}
367
368/*
369 * We're only looking at 7 bits of the address; everything is
370 * aligned to 4, lots of things are aligned to greater powers
371 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
372 */
373#define TABLESIZE	128
374static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
375#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
376
377#if 0
378/*
379 * During autoconfiguration or after a panic, a sleep will simply
380 * lower the priority briefly to allow interrupts, then return.
381 * The priority to be used (safepri) is machine-dependent, thus this
382 * value is initialized and maintained in the machine-dependent layers.
383 * This priority will typically be 0, or the lowest priority
384 * that is safe for use on the interrupt stack; it can be made
385 * higher to block network software interrupts after panics.
386 */
387int safepri;
388#endif
389
390void
391sleepinit(void)
392{
393	int i;
394
395	sched_quantum = hz/10;
396	hogticks = 2 * sched_quantum;
397	for (i = 0; i < TABLESIZE; i++)
398		TAILQ_INIT(&slpque[i]);
399}
400
401/*
402 * General sleep call.  Suspends the current process until a wakeup is
403 * performed on the specified identifier.  The process will then be made
404 * runnable with the specified priority.  Sleeps at most timo/hz seconds
405 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
406 * before and after sleeping, else signals are not checked.  Returns 0 if
407 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
408 * signal needs to be delivered, ERESTART is returned if the current system
409 * call should be restarted if possible, and EINTR is returned if the system
410 * call should be interrupted by the signal (return EINTR).
411 */
412int
413tsleep(ident, priority, wmesg, timo)
414	void *ident;
415	int priority, timo;
416	const char *wmesg;
417{
418	struct proc *p = curproc;
419	int s, sig, catch = priority & PCATCH;
420	struct callout_handle thandle;
421	int rval = 0;
422
423#ifdef KTRACE
424	if (p && KTRPOINT(p, KTR_CSW))
425		ktrcsw(p->p_tracep, 1, 0);
426#endif
427	mtx_assert(&Giant, MA_OWNED);
428	mtx_enter(&sched_lock, MTX_SPIN);
429
430	s = splhigh();
431	if (cold || panicstr) {
432		/*
433		 * After a panic, or during autoconfiguration,
434		 * just give interrupts a chance, then just return;
435		 * don't run any other procs or panic below,
436		 * in case this is the idle process and already asleep.
437		 */
438		mtx_exit(&sched_lock, MTX_SPIN);
439#if 0
440		splx(safepri);
441#endif
442		splx(s);
443		return (0);
444	}
445
446	KASSERT(p != NULL, ("tsleep1"));
447	KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
448	/*
449	 * Process may be sitting on a slpque if asleep() was called, remove
450	 * it before re-adding.
451	 */
452	if (p->p_wchan != NULL)
453		unsleep(p);
454
455	p->p_wchan = ident;
456	p->p_wmesg = wmesg;
457	p->p_slptime = 0;
458	p->p_priority = priority & PRIMASK;
459	p->p_nativepri = p->p_priority;
460	CTR4(KTR_PROC, "tsleep: proc %p (pid %d, %s), schedlock %p",
461		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
462	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
463	if (timo)
464		thandle = timeout(endtsleep, (void *)p, timo);
465	/*
466	 * We put ourselves on the sleep queue and start our timeout
467	 * before calling CURSIG, as we could stop there, and a wakeup
468	 * or a SIGCONT (or both) could occur while we were stopped.
469	 * A SIGCONT would cause us to be marked as SSLEEP
470	 * without resuming us, thus we must be ready for sleep
471	 * when CURSIG is called.  If the wakeup happens while we're
472	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
473	 */
474	if (catch) {
475		CTR4(KTR_PROC,
476		        "tsleep caught: proc %p (pid %d, %s), schedlock %p",
477			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
478		p->p_flag |= P_SINTR;
479		if ((sig = CURSIG(p))) {
480			if (p->p_wchan)
481				unsleep(p);
482			p->p_stat = SRUN;
483			goto resume;
484		}
485		if (p->p_wchan == 0) {
486			catch = 0;
487			goto resume;
488		}
489	} else
490		sig = 0;
491	p->p_stat = SSLEEP;
492	p->p_stats->p_ru.ru_nvcsw++;
493	mi_switch();
494	CTR4(KTR_PROC,
495	        "tsleep resume: proc %p (pid %d, %s), schedlock %p",
496		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
497resume:
498	curpriority = p->p_usrpri;
499	splx(s);
500	p->p_flag &= ~P_SINTR;
501	if (p->p_flag & P_TIMEOUT) {
502		p->p_flag &= ~P_TIMEOUT;
503		if (sig == 0) {
504#ifdef KTRACE
505			if (KTRPOINT(p, KTR_CSW))
506				ktrcsw(p->p_tracep, 0, 0);
507#endif
508			rval = EWOULDBLOCK;
509			goto out;
510		}
511	} else if (timo)
512		untimeout(endtsleep, (void *)p, thandle);
513	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
514#ifdef KTRACE
515		if (KTRPOINT(p, KTR_CSW))
516			ktrcsw(p->p_tracep, 0, 0);
517#endif
518		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
519			rval = EINTR;
520		else
521			rval = ERESTART;
522		goto out;
523	}
524out:
525	mtx_exit(&sched_lock, MTX_SPIN);
526#ifdef KTRACE
527	if (KTRPOINT(p, KTR_CSW))
528		ktrcsw(p->p_tracep, 0, 0);
529#endif
530
531	return (rval);
532}
533
534/*
535 * asleep() - async sleep call.  Place process on wait queue and return
536 * immediately without blocking.  The process stays runnable until await()
537 * is called.  If ident is NULL, remove process from wait queue if it is still
538 * on one.
539 *
540 * Only the most recent sleep condition is effective when making successive
541 * calls to asleep() or when calling tsleep().
542 *
543 * The timeout, if any, is not initiated until await() is called.  The sleep
544 * priority, signal, and timeout is specified in the asleep() call but may be
545 * overriden in the await() call.
546 *
547 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
548 */
549
550int
551asleep(void *ident, int priority, const char *wmesg, int timo)
552{
553	struct proc *p = curproc;
554	int s;
555
556	/*
557	 * obtain sched_lock while manipulating sleep structures and slpque.
558	 *
559	 * Remove preexisting wait condition (if any) and place process
560	 * on appropriate slpque, but do not put process to sleep.
561	 */
562
563	s = splhigh();
564	mtx_enter(&sched_lock, MTX_SPIN);
565
566	if (p->p_wchan != NULL)
567		unsleep(p);
568
569	if (ident) {
570		p->p_wchan = ident;
571		p->p_wmesg = wmesg;
572		p->p_slptime = 0;
573		p->p_asleep.as_priority = priority;
574		p->p_asleep.as_timo = timo;
575		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
576	}
577
578	mtx_exit(&sched_lock, MTX_SPIN);
579	splx(s);
580
581	return(0);
582}
583
584/*
585 * await() - wait for async condition to occur.   The process blocks until
586 * wakeup() is called on the most recent asleep() address.  If wakeup is called
587 * priority to await(), await() winds up being a NOP.
588 *
589 * If await() is called more then once (without an intervening asleep() call),
590 * await() is still effectively a NOP but it calls mi_switch() to give other
591 * processes some cpu before returning.  The process is left runnable.
592 *
593 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
594 */
595
596int
597await(int priority, int timo)
598{
599	struct proc *p = curproc;
600	int rval = 0;
601	int s;
602
603	mtx_assert(&Giant, MA_OWNED);
604	mtx_enter(&sched_lock, MTX_SPIN);
605
606	s = splhigh();
607
608	if (p->p_wchan != NULL) {
609		struct callout_handle thandle;
610		int sig;
611		int catch;
612
613		/*
614		 * The call to await() can override defaults specified in
615		 * the original asleep().
616		 */
617		if (priority < 0)
618			priority = p->p_asleep.as_priority;
619		if (timo < 0)
620			timo = p->p_asleep.as_timo;
621
622		/*
623		 * Install timeout
624		 */
625
626		if (timo)
627			thandle = timeout(endtsleep, (void *)p, timo);
628
629		sig = 0;
630		catch = priority & PCATCH;
631
632		if (catch) {
633			p->p_flag |= P_SINTR;
634			if ((sig = CURSIG(p))) {
635				if (p->p_wchan)
636					unsleep(p);
637				p->p_stat = SRUN;
638				goto resume;
639			}
640			if (p->p_wchan == NULL) {
641				catch = 0;
642				goto resume;
643			}
644		}
645		p->p_stat = SSLEEP;
646		p->p_stats->p_ru.ru_nvcsw++;
647		mi_switch();
648resume:
649		curpriority = p->p_usrpri;
650
651		splx(s);
652		p->p_flag &= ~P_SINTR;
653		if (p->p_flag & P_TIMEOUT) {
654			p->p_flag &= ~P_TIMEOUT;
655			if (sig == 0) {
656#ifdef KTRACE
657				if (KTRPOINT(p, KTR_CSW))
658					ktrcsw(p->p_tracep, 0, 0);
659#endif
660				rval = EWOULDBLOCK;
661				goto out;
662			}
663		} else if (timo)
664			untimeout(endtsleep, (void *)p, thandle);
665		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
666#ifdef KTRACE
667			if (KTRPOINT(p, KTR_CSW))
668				ktrcsw(p->p_tracep, 0, 0);
669#endif
670			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
671				rval = EINTR;
672			else
673				rval = ERESTART;
674			goto out;
675		}
676#ifdef KTRACE
677		if (KTRPOINT(p, KTR_CSW))
678			ktrcsw(p->p_tracep, 0, 0);
679#endif
680	} else {
681		/*
682		 * If as_priority is 0, await() has been called without an
683		 * intervening asleep().  We are still effectively a NOP,
684		 * but we call mi_switch() for safety.
685		 */
686
687		if (p->p_asleep.as_priority == 0) {
688			p->p_stats->p_ru.ru_nvcsw++;
689			mi_switch();
690		}
691		splx(s);
692	}
693
694	/*
695	 * clear p_asleep.as_priority as an indication that await() has been
696	 * called.  If await() is called again without an intervening asleep(),
697	 * await() is still effectively a NOP but the above mi_switch() code
698	 * is triggered as a safety.
699	 */
700	p->p_asleep.as_priority = 0;
701
702out:
703	mtx_exit(&sched_lock, MTX_SPIN);
704
705	return (rval);
706}
707
708/*
709 * Implement timeout for tsleep or asleep()/await()
710 *
711 * If process hasn't been awakened (wchan non-zero),
712 * set timeout flag and undo the sleep.  If proc
713 * is stopped, just unsleep so it will remain stopped.
714 */
715static void
716endtsleep(arg)
717	void *arg;
718{
719	register struct proc *p;
720	int s;
721
722	p = (struct proc *)arg;
723	CTR4(KTR_PROC,
724	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
725		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
726	s = splhigh();
727	mtx_enter(&sched_lock, MTX_SPIN);
728	if (p->p_wchan) {
729		if (p->p_stat == SSLEEP)
730			setrunnable(p);
731		else
732			unsleep(p);
733		p->p_flag |= P_TIMEOUT;
734	}
735	mtx_exit(&sched_lock, MTX_SPIN);
736	splx(s);
737}
738
739/*
740 * Remove a process from its wait queue
741 */
742void
743unsleep(p)
744	register struct proc *p;
745{
746	int s;
747
748	s = splhigh();
749	mtx_enter(&sched_lock, MTX_SPIN);
750	if (p->p_wchan) {
751		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
752		p->p_wchan = 0;
753	}
754	mtx_exit(&sched_lock, MTX_SPIN);
755	splx(s);
756}
757
758/*
759 * Make all processes sleeping on the specified identifier runnable.
760 */
761void
762wakeup(ident)
763	register void *ident;
764{
765	register struct slpquehead *qp;
766	register struct proc *p;
767	int s;
768
769	s = splhigh();
770	mtx_enter(&sched_lock, MTX_SPIN);
771	qp = &slpque[LOOKUP(ident)];
772restart:
773	TAILQ_FOREACH(p, qp, p_procq) {
774		if (p->p_wchan == ident) {
775			TAILQ_REMOVE(qp, p, p_procq);
776			p->p_wchan = 0;
777			if (p->p_stat == SSLEEP) {
778				/* OPTIMIZED EXPANSION OF setrunnable(p); */
779				CTR4(KTR_PROC,
780				        "wakeup: proc %p (pid %d, %s), schedlock %p",
781					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
782				if (p->p_slptime > 1)
783					updatepri(p);
784				p->p_slptime = 0;
785				p->p_stat = SRUN;
786				if (p->p_flag & P_INMEM) {
787					setrunqueue(p);
788					maybe_resched(p);
789				} else {
790					p->p_flag |= P_SWAPINREQ;
791					wakeup((caddr_t)&proc0);
792				}
793				/* END INLINE EXPANSION */
794				goto restart;
795			}
796		}
797	}
798	mtx_exit(&sched_lock, MTX_SPIN);
799	splx(s);
800}
801
802/*
803 * Make a process sleeping on the specified identifier runnable.
804 * May wake more than one process if a target process is currently
805 * swapped out.
806 */
807void
808wakeup_one(ident)
809	register void *ident;
810{
811	register struct slpquehead *qp;
812	register struct proc *p;
813	int s;
814
815	s = splhigh();
816	mtx_enter(&sched_lock, MTX_SPIN);
817	qp = &slpque[LOOKUP(ident)];
818
819	TAILQ_FOREACH(p, qp, p_procq) {
820		if (p->p_wchan == ident) {
821			TAILQ_REMOVE(qp, p, p_procq);
822			p->p_wchan = 0;
823			if (p->p_stat == SSLEEP) {
824				/* OPTIMIZED EXPANSION OF setrunnable(p); */
825				CTR4(KTR_PROC,
826				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
827					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
828				if (p->p_slptime > 1)
829					updatepri(p);
830				p->p_slptime = 0;
831				p->p_stat = SRUN;
832				if (p->p_flag & P_INMEM) {
833					setrunqueue(p);
834					maybe_resched(p);
835					break;
836				} else {
837					p->p_flag |= P_SWAPINREQ;
838					wakeup((caddr_t)&proc0);
839				}
840				/* END INLINE EXPANSION */
841			}
842		}
843	}
844	mtx_exit(&sched_lock, MTX_SPIN);
845	splx(s);
846}
847
848/*
849 * The machine independent parts of mi_switch().
850 * Must be called at splstatclock() or higher.
851 */
852void
853mi_switch()
854{
855	struct timeval new_switchtime;
856	register struct proc *p = curproc;	/* XXX */
857	register struct rlimit *rlim;
858	int giantreleased;
859	int x;
860	WITNESS_SAVE_DECL(Giant);
861
862	/*
863	 * XXX this spl is almost unnecessary.  It is partly to allow for
864	 * sloppy callers that don't do it (issignal() via CURSIG() is the
865	 * main offender).  It is partly to work around a bug in the i386
866	 * cpu_switch() (the ipl is not preserved).  We ran for years
867	 * without it.  I think there was only a interrupt latency problem.
868	 * The main caller, tsleep(), does an splx() a couple of instructions
869	 * after calling here.  The buggy caller, issignal(), usually calls
870	 * here at spl0() and sometimes returns at splhigh().  The process
871	 * then runs for a little too long at splhigh().  The ipl gets fixed
872	 * when the process returns to user mode (or earlier).
873	 *
874	 * It would probably be better to always call here at spl0(). Callers
875	 * are prepared to give up control to another process, so they must
876	 * be prepared to be interrupted.  The clock stuff here may not
877	 * actually need splstatclock().
878	 */
879	x = splstatclock();
880
881	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
882		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
883	mtx_enter(&sched_lock, MTX_SPIN | MTX_RLIKELY);
884
885	WITNESS_SAVE(&Giant, Giant);
886	for (giantreleased = 0; mtx_owned(&Giant); giantreleased++)
887		mtx_exit(&Giant, MTX_DEF | MTX_NOSWITCH);
888
889#ifdef SIMPLELOCK_DEBUG
890	if (p->p_simple_locks)
891		printf("sleep: holding simple lock\n");
892#endif
893	/*
894	 * Compute the amount of time during which the current
895	 * process was running, and add that to its total so far.
896	 */
897	microuptime(&new_switchtime);
898	if (timevalcmp(&new_switchtime, &switchtime, <)) {
899		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
900		    switchtime.tv_sec, switchtime.tv_usec,
901		    new_switchtime.tv_sec, new_switchtime.tv_usec);
902		new_switchtime = switchtime;
903	} else {
904		p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) +
905		    (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
906	}
907
908	/*
909	 * Check if the process exceeds its cpu resource allocation.
910	 * If over max, kill it.
911	 *
912	 * XXX drop sched_lock, pickup Giant
913	 */
914	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
915	    p->p_runtime > p->p_limit->p_cpulimit) {
916		rlim = &p->p_rlimit[RLIMIT_CPU];
917		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
918			killproc(p, "exceeded maximum CPU limit");
919		} else {
920			psignal(p, SIGXCPU);
921			if (rlim->rlim_cur < rlim->rlim_max) {
922				/* XXX: we should make a private copy */
923				rlim->rlim_cur += 5;
924			}
925		}
926	}
927
928	/*
929	 * Pick a new current process and record its start time.
930	 */
931	cnt.v_swtch++;
932	switchtime = new_switchtime;
933	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
934		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
935	cpu_switch();
936	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
937		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
938	if (switchtime.tv_sec == 0)
939		microuptime(&switchtime);
940	switchticks = ticks;
941	mtx_exit(&sched_lock, MTX_SPIN);
942	while (giantreleased--)
943		mtx_enter(&Giant, MTX_DEF);
944	WITNESS_RESTORE(&Giant, Giant);
945
946	splx(x);
947}
948
949/*
950 * Change process state to be runnable,
951 * placing it on the run queue if it is in memory,
952 * and awakening the swapper if it isn't in memory.
953 */
954void
955setrunnable(p)
956	register struct proc *p;
957{
958	register int s;
959
960	s = splhigh();
961	mtx_enter(&sched_lock, MTX_SPIN);
962	switch (p->p_stat) {
963	case 0:
964	case SRUN:
965	case SZOMB:
966	case SWAIT:
967	default:
968		panic("setrunnable");
969	case SSTOP:
970	case SSLEEP:
971		unsleep(p);		/* e.g. when sending signals */
972		break;
973
974	case SIDL:
975		break;
976	}
977	p->p_stat = SRUN;
978	if (p->p_flag & P_INMEM)
979		setrunqueue(p);
980	mtx_exit(&sched_lock, MTX_SPIN);
981	splx(s);
982	if (p->p_slptime > 1)
983		updatepri(p);
984	p->p_slptime = 0;
985	if ((p->p_flag & P_INMEM) == 0) {
986		p->p_flag |= P_SWAPINREQ;
987		wakeup((caddr_t)&proc0);
988	}
989	else
990		maybe_resched(p);
991}
992
993/*
994 * Compute the priority of a process when running in user mode.
995 * Arrange to reschedule if the resulting priority is better
996 * than that of the current process.
997 */
998void
999resetpriority(p)
1000	register struct proc *p;
1001{
1002	register unsigned int newpriority;
1003
1004	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
1005		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
1006		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
1007		newpriority = min(newpriority, MAXPRI);
1008		p->p_usrpri = newpriority;
1009	}
1010	maybe_resched(p);
1011}
1012
1013/* ARGSUSED */
1014static void
1015sched_setup(dummy)
1016	void *dummy;
1017{
1018	/* Kick off timeout driven events by calling first time. */
1019	roundrobin(NULL);
1020	schedcpu(NULL);
1021}
1022
1023/*
1024 * We adjust the priority of the current process.  The priority of
1025 * a process gets worse as it accumulates CPU time.  The cpu usage
1026 * estimator (p_estcpu) is increased here.  resetpriority() will
1027 * compute a different priority each time p_estcpu increases by
1028 * INVERSE_ESTCPU_WEIGHT
1029 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1030 * quite quickly when the process is running (linearly), and decays
1031 * away exponentially, at a rate which is proportionally slower when
1032 * the system is busy.  The basic principle is that the system will
1033 * 90% forget that the process used a lot of CPU time in 5 * loadav
1034 * seconds.  This causes the system to favor processes which haven't
1035 * run much recently, and to round-robin among other processes.
1036 */
1037void
1038schedclock(p)
1039	struct proc *p;
1040{
1041
1042	p->p_cpticks++;
1043	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1044	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1045		resetpriority(p);
1046		if (p->p_priority >= PUSER)
1047			p->p_priority = p->p_usrpri;
1048	}
1049}
1050