kern_synch.c revision 58717
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 58717 2000-03-28 07:16:37Z dillon $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#include <machine/ipl.h>
61#ifdef SMP
62#include <machine/smp.h>
63#endif
64
65static void sched_setup __P((void *dummy));
66SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
67
68u_char	curpriority;
69int	hogticks;
70int	lbolt;
71int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
72
73static int	curpriority_cmp __P((struct proc *p));
74static void	endtsleep __P((void *));
75static void	maybe_resched __P((struct proc *chk));
76static void	roundrobin __P((void *arg));
77static void	schedcpu __P((void *arg));
78static void	updatepri __P((struct proc *p));
79
80static int
81sysctl_kern_quantum SYSCTL_HANDLER_ARGS
82{
83	int error, new_val;
84
85	new_val = sched_quantum * tick;
86	error = sysctl_handle_int(oidp, &new_val, 0, req);
87        if (error != 0 || req->newptr == NULL)
88		return (error);
89	if (new_val < tick)
90		return (EINVAL);
91	sched_quantum = new_val / tick;
92	hogticks = 2 * sched_quantum;
93	return (0);
94}
95
96SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
97	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
98
99/*-
100 * Compare priorities.  Return:
101 *     <0: priority of p < current priority
102 *      0: priority of p == current priority
103 *     >0: priority of p > current priority
104 * The priorities are the normal priorities or the normal realtime priorities
105 * if p is on the same scheduler as curproc.  Otherwise the process on the
106 * more realtimeish scheduler has lowest priority.  As usual, a higher
107 * priority really means a lower priority.
108 */
109static int
110curpriority_cmp(p)
111	struct proc *p;
112{
113	int c_class, p_class;
114
115	c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
116	p_class = RTP_PRIO_BASE(p->p_rtprio.type);
117	if (p_class != c_class)
118		return (p_class - c_class);
119	if (p_class == RTP_PRIO_NORMAL)
120		return (((int)p->p_priority - (int)curpriority) / PPQ);
121	return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
122}
123
124/*
125 * Arrange to reschedule if necessary, taking the priorities and
126 * schedulers into account.
127 */
128static void
129maybe_resched(chk)
130	struct proc *chk;
131{
132	struct proc *p = curproc; /* XXX */
133
134	/*
135	 * XXX idle scheduler still broken because proccess stays on idle
136	 * scheduler during waits (such as when getting FS locks).  If a
137	 * standard process becomes runaway cpu-bound, the system can lockup
138	 * due to idle-scheduler processes in wakeup never getting any cpu.
139	 */
140	if (p == NULL) {
141#if 0
142		need_resched();
143#endif
144	} else if (chk == p) {
145		/* We may need to yield if our priority has been raised. */
146		if (curpriority_cmp(chk) > 0)
147			need_resched();
148	} else if (curpriority_cmp(chk) < 0)
149		need_resched();
150}
151
152int
153roundrobin_interval(void)
154{
155	return (sched_quantum);
156}
157
158/*
159 * Force switch among equal priority processes every 100ms.
160 */
161/* ARGSUSED */
162static void
163roundrobin(arg)
164	void *arg;
165{
166#ifndef SMP
167 	struct proc *p = curproc; /* XXX */
168#endif
169
170#ifdef SMP
171	need_resched();
172	forward_roundrobin();
173#else
174 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
175 		need_resched();
176#endif
177
178 	timeout(roundrobin, NULL, sched_quantum);
179}
180
181/*
182 * Constants for digital decay and forget:
183 *	90% of (p_estcpu) usage in 5 * loadav time
184 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
185 *          Note that, as ps(1) mentions, this can let percentages
186 *          total over 100% (I've seen 137.9% for 3 processes).
187 *
188 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
189 *
190 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
191 * That is, the system wants to compute a value of decay such
192 * that the following for loop:
193 * 	for (i = 0; i < (5 * loadavg); i++)
194 * 		p_estcpu *= decay;
195 * will compute
196 * 	p_estcpu *= 0.1;
197 * for all values of loadavg:
198 *
199 * Mathematically this loop can be expressed by saying:
200 * 	decay ** (5 * loadavg) ~= .1
201 *
202 * The system computes decay as:
203 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
204 *
205 * We wish to prove that the system's computation of decay
206 * will always fulfill the equation:
207 * 	decay ** (5 * loadavg) ~= .1
208 *
209 * If we compute b as:
210 * 	b = 2 * loadavg
211 * then
212 * 	decay = b / (b + 1)
213 *
214 * We now need to prove two things:
215 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
216 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
217 *
218 * Facts:
219 *         For x close to zero, exp(x) =~ 1 + x, since
220 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
221 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
222 *         For x close to zero, ln(1+x) =~ x, since
223 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
224 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
225 *         ln(.1) =~ -2.30
226 *
227 * Proof of (1):
228 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
229 *	solving for factor,
230 *      ln(factor) =~ (-2.30/5*loadav), or
231 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
232 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
233 *
234 * Proof of (2):
235 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
236 *	solving for power,
237 *      power*ln(b/(b+1)) =~ -2.30, or
238 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
239 *
240 * Actual power values for the implemented algorithm are as follows:
241 *      loadav: 1       2       3       4
242 *      power:  5.68    10.32   14.94   19.55
243 */
244
245/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
246#define	loadfactor(loadav)	(2 * (loadav))
247#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
248
249/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
250static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
251SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
252
253/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
254static int	fscale __unused = FSCALE;
255SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
256
257/*
258 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
259 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
260 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
261 *
262 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
263 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
264 *
265 * If you don't want to bother with the faster/more-accurate formula, you
266 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
267 * (more general) method of calculating the %age of CPU used by a process.
268 */
269#define	CCPU_SHIFT	11
270
271/*
272 * Recompute process priorities, every hz ticks.
273 */
274/* ARGSUSED */
275static void
276schedcpu(arg)
277	void *arg;
278{
279	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
280	register struct proc *p;
281	register int realstathz, s;
282
283	realstathz = stathz ? stathz : hz;
284	LIST_FOREACH(p, &allproc, p_list) {
285		/*
286		 * Increment time in/out of memory and sleep time
287		 * (if sleeping).  We ignore overflow; with 16-bit int's
288		 * (remember them?) overflow takes 45 days.
289		 */
290		p->p_swtime++;
291		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
292			p->p_slptime++;
293		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
294		/*
295		 * If the process has slept the entire second,
296		 * stop recalculating its priority until it wakes up.
297		 */
298		if (p->p_slptime > 1)
299			continue;
300		s = splhigh();	/* prevent state changes and protect run queue */
301		/*
302		 * p_pctcpu is only for ps.
303		 */
304#if	(FSHIFT >= CCPU_SHIFT)
305		p->p_pctcpu += (realstathz == 100)?
306			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
307                	100 * (((fixpt_t) p->p_cpticks)
308				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
309#else
310		p->p_pctcpu += ((FSCALE - ccpu) *
311			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
312#endif
313		p->p_cpticks = 0;
314		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
315		resetpriority(p);
316		if (p->p_priority >= PUSER) {
317			if ((p != curproc) &&
318#ifdef SMP
319			    p->p_oncpu == 0xff && 	/* idle */
320#endif
321			    p->p_stat == SRUN &&
322			    (p->p_flag & P_INMEM) &&
323			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
324				remrunqueue(p);
325				p->p_priority = p->p_usrpri;
326				setrunqueue(p);
327			} else
328				p->p_priority = p->p_usrpri;
329		}
330		splx(s);
331	}
332	vmmeter();
333	wakeup((caddr_t)&lbolt);
334	timeout(schedcpu, (void *)0, hz);
335}
336
337/*
338 * Recalculate the priority of a process after it has slept for a while.
339 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
340 * least six times the loadfactor will decay p_estcpu to zero.
341 */
342static void
343updatepri(p)
344	register struct proc *p;
345{
346	register unsigned int newcpu = p->p_estcpu;
347	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
348
349	if (p->p_slptime > 5 * loadfac)
350		p->p_estcpu = 0;
351	else {
352		p->p_slptime--;	/* the first time was done in schedcpu */
353		while (newcpu && --p->p_slptime)
354			newcpu = decay_cpu(loadfac, newcpu);
355		p->p_estcpu = newcpu;
356	}
357	resetpriority(p);
358}
359
360/*
361 * We're only looking at 7 bits of the address; everything is
362 * aligned to 4, lots of things are aligned to greater powers
363 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
364 */
365#define TABLESIZE	128
366static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
367#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
368
369/*
370 * During autoconfiguration or after a panic, a sleep will simply
371 * lower the priority briefly to allow interrupts, then return.
372 * The priority to be used (safepri) is machine-dependent, thus this
373 * value is initialized and maintained in the machine-dependent layers.
374 * This priority will typically be 0, or the lowest priority
375 * that is safe for use on the interrupt stack; it can be made
376 * higher to block network software interrupts after panics.
377 */
378int safepri;
379
380void
381sleepinit(void)
382{
383	int i;
384
385	sched_quantum = hz/10;
386	hogticks = 2 * sched_quantum;
387	for (i = 0; i < TABLESIZE; i++)
388		TAILQ_INIT(&slpque[i]);
389}
390
391/*
392 * General sleep call.  Suspends the current process until a wakeup is
393 * performed on the specified identifier.  The process will then be made
394 * runnable with the specified priority.  Sleeps at most timo/hz seconds
395 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
396 * before and after sleeping, else signals are not checked.  Returns 0 if
397 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
398 * signal needs to be delivered, ERESTART is returned if the current system
399 * call should be restarted if possible, and EINTR is returned if the system
400 * call should be interrupted by the signal (return EINTR).
401 */
402int
403tsleep(ident, priority, wmesg, timo)
404	void *ident;
405	int priority, timo;
406	const char *wmesg;
407{
408	struct proc *p = curproc;
409	int s, sig, catch = priority & PCATCH;
410	struct callout_handle thandle;
411
412#ifdef KTRACE
413	if (p && KTRPOINT(p, KTR_CSW))
414		ktrcsw(p->p_tracep, 1, 0);
415#endif
416	s = splhigh();
417	if (cold || panicstr) {
418		/*
419		 * After a panic, or during autoconfiguration,
420		 * just give interrupts a chance, then just return;
421		 * don't run any other procs or panic below,
422		 * in case this is the idle process and already asleep.
423		 */
424		splx(safepri);
425		splx(s);
426		return (0);
427	}
428	KASSERT(p != NULL, ("tsleep1"));
429	KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
430	/*
431	 * Process may be sitting on a slpque if asleep() was called, remove
432	 * it before re-adding.
433	 */
434	if (p->p_wchan != NULL)
435		unsleep(p);
436
437	p->p_wchan = ident;
438	p->p_wmesg = wmesg;
439	p->p_slptime = 0;
440	p->p_priority = priority & PRIMASK;
441	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
442	if (timo)
443		thandle = timeout(endtsleep, (void *)p, timo);
444	/*
445	 * We put ourselves on the sleep queue and start our timeout
446	 * before calling CURSIG, as we could stop there, and a wakeup
447	 * or a SIGCONT (or both) could occur while we were stopped.
448	 * A SIGCONT would cause us to be marked as SSLEEP
449	 * without resuming us, thus we must be ready for sleep
450	 * when CURSIG is called.  If the wakeup happens while we're
451	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
452	 */
453	if (catch) {
454		p->p_flag |= P_SINTR;
455		if ((sig = CURSIG(p))) {
456			if (p->p_wchan)
457				unsleep(p);
458			p->p_stat = SRUN;
459			goto resume;
460		}
461		if (p->p_wchan == 0) {
462			catch = 0;
463			goto resume;
464		}
465	} else
466		sig = 0;
467	p->p_stat = SSLEEP;
468	p->p_stats->p_ru.ru_nvcsw++;
469	mi_switch();
470resume:
471	curpriority = p->p_usrpri;
472	splx(s);
473	p->p_flag &= ~P_SINTR;
474	if (p->p_flag & P_TIMEOUT) {
475		p->p_flag &= ~P_TIMEOUT;
476		if (sig == 0) {
477#ifdef KTRACE
478			if (KTRPOINT(p, KTR_CSW))
479				ktrcsw(p->p_tracep, 0, 0);
480#endif
481			return (EWOULDBLOCK);
482		}
483	} else if (timo)
484		untimeout(endtsleep, (void *)p, thandle);
485	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
486#ifdef KTRACE
487		if (KTRPOINT(p, KTR_CSW))
488			ktrcsw(p->p_tracep, 0, 0);
489#endif
490		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
491			return (EINTR);
492		return (ERESTART);
493	}
494#ifdef KTRACE
495	if (KTRPOINT(p, KTR_CSW))
496		ktrcsw(p->p_tracep, 0, 0);
497#endif
498	return (0);
499}
500
501/*
502 * asleep() - async sleep call.  Place process on wait queue and return
503 * immediately without blocking.  The process stays runnable until await()
504 * is called.  If ident is NULL, remove process from wait queue if it is still
505 * on one.
506 *
507 * Only the most recent sleep condition is effective when making successive
508 * calls to asleep() or when calling tsleep().
509 *
510 * The timeout, if any, is not initiated until await() is called.  The sleep
511 * priority, signal, and timeout is specified in the asleep() call but may be
512 * overriden in the await() call.
513 *
514 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
515 */
516
517int
518asleep(void *ident, int priority, const char *wmesg, int timo)
519{
520	struct proc *p = curproc;
521	int s;
522
523	/*
524	 * splhigh() while manipulating sleep structures and slpque.
525	 *
526	 * Remove preexisting wait condition (if any) and place process
527	 * on appropriate slpque, but do not put process to sleep.
528	 */
529
530	s = splhigh();
531
532	if (p->p_wchan != NULL)
533		unsleep(p);
534
535	if (ident) {
536		p->p_wchan = ident;
537		p->p_wmesg = wmesg;
538		p->p_slptime = 0;
539		p->p_asleep.as_priority = priority;
540		p->p_asleep.as_timo = timo;
541		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
542	}
543
544	splx(s);
545
546	return(0);
547}
548
549/*
550 * await() - wait for async condition to occur.   The process blocks until
551 * wakeup() is called on the most recent asleep() address.  If wakeup is called
552 * priority to await(), await() winds up being a NOP.
553 *
554 * If await() is called more then once (without an intervening asleep() call),
555 * await() is still effectively a NOP but it calls mi_switch() to give other
556 * processes some cpu before returning.  The process is left runnable.
557 *
558 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
559 */
560
561int
562await(int priority, int timo)
563{
564	struct proc *p = curproc;
565	int s;
566
567	s = splhigh();
568
569	if (p->p_wchan != NULL) {
570		struct callout_handle thandle;
571		int sig;
572		int catch;
573
574		/*
575		 * The call to await() can override defaults specified in
576		 * the original asleep().
577		 */
578		if (priority < 0)
579			priority = p->p_asleep.as_priority;
580		if (timo < 0)
581			timo = p->p_asleep.as_timo;
582
583		/*
584		 * Install timeout
585		 */
586
587		if (timo)
588			thandle = timeout(endtsleep, (void *)p, timo);
589
590		sig = 0;
591		catch = priority & PCATCH;
592
593		if (catch) {
594			p->p_flag |= P_SINTR;
595			if ((sig = CURSIG(p))) {
596				if (p->p_wchan)
597					unsleep(p);
598				p->p_stat = SRUN;
599				goto resume;
600			}
601			if (p->p_wchan == NULL) {
602				catch = 0;
603				goto resume;
604			}
605		}
606		p->p_stat = SSLEEP;
607		p->p_stats->p_ru.ru_nvcsw++;
608		mi_switch();
609resume:
610		curpriority = p->p_usrpri;
611
612		splx(s);
613		p->p_flag &= ~P_SINTR;
614		if (p->p_flag & P_TIMEOUT) {
615			p->p_flag &= ~P_TIMEOUT;
616			if (sig == 0) {
617#ifdef KTRACE
618				if (KTRPOINT(p, KTR_CSW))
619					ktrcsw(p->p_tracep, 0, 0);
620#endif
621				return (EWOULDBLOCK);
622			}
623		} else if (timo)
624			untimeout(endtsleep, (void *)p, thandle);
625		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
626#ifdef KTRACE
627			if (KTRPOINT(p, KTR_CSW))
628				ktrcsw(p->p_tracep, 0, 0);
629#endif
630			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
631				return (EINTR);
632			return (ERESTART);
633		}
634#ifdef KTRACE
635		if (KTRPOINT(p, KTR_CSW))
636			ktrcsw(p->p_tracep, 0, 0);
637#endif
638	} else {
639		/*
640		 * If as_priority is 0, await() has been called without an
641		 * intervening asleep().  We are still effectively a NOP,
642		 * but we call mi_switch() for safety.
643		 */
644
645		if (p->p_asleep.as_priority == 0) {
646			p->p_stats->p_ru.ru_nvcsw++;
647			mi_switch();
648		}
649		splx(s);
650	}
651
652	/*
653	 * clear p_asleep.as_priority as an indication that await() has been
654	 * called.  If await() is called again without an intervening asleep(),
655	 * await() is still effectively a NOP but the above mi_switch() code
656	 * is triggered as a safety.
657	 */
658	p->p_asleep.as_priority = 0;
659
660	return (0);
661}
662
663/*
664 * Implement timeout for tsleep or asleep()/await()
665 *
666 * If process hasn't been awakened (wchan non-zero),
667 * set timeout flag and undo the sleep.  If proc
668 * is stopped, just unsleep so it will remain stopped.
669 */
670static void
671endtsleep(arg)
672	void *arg;
673{
674	register struct proc *p;
675	int s;
676
677	p = (struct proc *)arg;
678	s = splhigh();
679	if (p->p_wchan) {
680		if (p->p_stat == SSLEEP)
681			setrunnable(p);
682		else
683			unsleep(p);
684		p->p_flag |= P_TIMEOUT;
685	}
686	splx(s);
687}
688
689/*
690 * Remove a process from its wait queue
691 */
692void
693unsleep(p)
694	register struct proc *p;
695{
696	int s;
697
698	s = splhigh();
699	if (p->p_wchan) {
700		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
701		p->p_wchan = 0;
702	}
703	splx(s);
704}
705
706/*
707 * Make all processes sleeping on the specified identifier runnable.
708 */
709void
710wakeup(ident)
711	register void *ident;
712{
713	register struct slpquehead *qp;
714	register struct proc *p;
715	int s;
716
717	s = splhigh();
718	qp = &slpque[LOOKUP(ident)];
719restart:
720	TAILQ_FOREACH(p, qp, p_procq) {
721		if (p->p_wchan == ident) {
722			TAILQ_REMOVE(qp, p, p_procq);
723			p->p_wchan = 0;
724			if (p->p_stat == SSLEEP) {
725				/* OPTIMIZED EXPANSION OF setrunnable(p); */
726				if (p->p_slptime > 1)
727					updatepri(p);
728				p->p_slptime = 0;
729				p->p_stat = SRUN;
730				if (p->p_flag & P_INMEM) {
731					setrunqueue(p);
732					maybe_resched(p);
733				} else {
734					p->p_flag |= P_SWAPINREQ;
735					wakeup((caddr_t)&proc0);
736				}
737				/* END INLINE EXPANSION */
738				goto restart;
739			}
740		}
741	}
742	splx(s);
743}
744
745/*
746 * Make a process sleeping on the specified identifier runnable.
747 * May wake more than one process if a target prcoess is currently
748 * swapped out.
749 */
750void
751wakeup_one(ident)
752	register void *ident;
753{
754	register struct slpquehead *qp;
755	register struct proc *p;
756	int s;
757
758	s = splhigh();
759	qp = &slpque[LOOKUP(ident)];
760
761	TAILQ_FOREACH(p, qp, p_procq) {
762		if (p->p_wchan == ident) {
763			TAILQ_REMOVE(qp, p, p_procq);
764			p->p_wchan = 0;
765			if (p->p_stat == SSLEEP) {
766				/* OPTIMIZED EXPANSION OF setrunnable(p); */
767				if (p->p_slptime > 1)
768					updatepri(p);
769				p->p_slptime = 0;
770				p->p_stat = SRUN;
771				if (p->p_flag & P_INMEM) {
772					setrunqueue(p);
773					maybe_resched(p);
774					break;
775				} else {
776					p->p_flag |= P_SWAPINREQ;
777					wakeup((caddr_t)&proc0);
778				}
779				/* END INLINE EXPANSION */
780			}
781		}
782	}
783	splx(s);
784}
785
786/*
787 * The machine independent parts of mi_switch().
788 * Must be called at splstatclock() or higher.
789 */
790void
791mi_switch()
792{
793	struct timeval new_switchtime;
794	register struct proc *p = curproc;	/* XXX */
795	register struct rlimit *rlim;
796	int x;
797
798	/*
799	 * XXX this spl is almost unnecessary.  It is partly to allow for
800	 * sloppy callers that don't do it (issignal() via CURSIG() is the
801	 * main offender).  It is partly to work around a bug in the i386
802	 * cpu_switch() (the ipl is not preserved).  We ran for years
803	 * without it.  I think there was only a interrupt latency problem.
804	 * The main caller, tsleep(), does an splx() a couple of instructions
805	 * after calling here.  The buggy caller, issignal(), usually calls
806	 * here at spl0() and sometimes returns at splhigh().  The process
807	 * then runs for a little too long at splhigh().  The ipl gets fixed
808	 * when the process returns to user mode (or earlier).
809	 *
810	 * It would probably be better to always call here at spl0(). Callers
811	 * are prepared to give up control to another process, so they must
812	 * be prepared to be interrupted.  The clock stuff here may not
813	 * actually need splstatclock().
814	 */
815	x = splstatclock();
816
817#ifdef SIMPLELOCK_DEBUG
818	if (p->p_simple_locks)
819		printf("sleep: holding simple lock\n");
820#endif
821	/*
822	 * Compute the amount of time during which the current
823	 * process was running, and add that to its total so far.
824	 */
825	microuptime(&new_switchtime);
826	if (timevalcmp(&new_switchtime, &switchtime, <)) {
827		printf("microuptime() went backwards (%ld.%06ld -> %ld,%06ld)\n",
828		    switchtime.tv_sec, switchtime.tv_usec,
829		    new_switchtime.tv_sec, new_switchtime.tv_usec);
830		new_switchtime = switchtime;
831	} else {
832		p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) +
833		    (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
834	}
835
836	/*
837	 * Check if the process exceeds its cpu resource allocation.
838	 * If over max, kill it.
839	 */
840	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
841	    p->p_runtime > p->p_limit->p_cpulimit) {
842		rlim = &p->p_rlimit[RLIMIT_CPU];
843		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
844			killproc(p, "exceeded maximum CPU limit");
845		} else {
846			psignal(p, SIGXCPU);
847			if (rlim->rlim_cur < rlim->rlim_max) {
848				/* XXX: we should make a private copy */
849				rlim->rlim_cur += 5;
850			}
851		}
852	}
853
854	/*
855	 * Pick a new current process and record its start time.
856	 */
857	cnt.v_swtch++;
858	switchtime = new_switchtime;
859	cpu_switch(p);
860	if (switchtime.tv_sec == 0)
861		microuptime(&switchtime);
862	switchticks = ticks;
863
864	splx(x);
865}
866
867/*
868 * Change process state to be runnable,
869 * placing it on the run queue if it is in memory,
870 * and awakening the swapper if it isn't in memory.
871 */
872void
873setrunnable(p)
874	register struct proc *p;
875{
876	register int s;
877
878	s = splhigh();
879	switch (p->p_stat) {
880	case 0:
881	case SRUN:
882	case SZOMB:
883	default:
884		panic("setrunnable");
885	case SSTOP:
886	case SSLEEP:
887		unsleep(p);		/* e.g. when sending signals */
888		break;
889
890	case SIDL:
891		break;
892	}
893	p->p_stat = SRUN;
894	if (p->p_flag & P_INMEM)
895		setrunqueue(p);
896	splx(s);
897	if (p->p_slptime > 1)
898		updatepri(p);
899	p->p_slptime = 0;
900	if ((p->p_flag & P_INMEM) == 0) {
901		p->p_flag |= P_SWAPINREQ;
902		wakeup((caddr_t)&proc0);
903	}
904	else
905		maybe_resched(p);
906}
907
908/*
909 * Compute the priority of a process when running in user mode.
910 * Arrange to reschedule if the resulting priority is better
911 * than that of the current process.
912 */
913void
914resetpriority(p)
915	register struct proc *p;
916{
917	register unsigned int newpriority;
918
919	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
920		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
921		    NICE_WEIGHT * p->p_nice;
922		newpriority = min(newpriority, MAXPRI);
923		p->p_usrpri = newpriority;
924	}
925	maybe_resched(p);
926}
927
928/* ARGSUSED */
929static void
930sched_setup(dummy)
931	void *dummy;
932{
933	/* Kick off timeout driven events by calling first time. */
934	roundrobin(NULL);
935	schedcpu(NULL);
936}
937
938/*
939 * We adjust the priority of the current process.  The priority of
940 * a process gets worse as it accumulates CPU time.  The cpu usage
941 * estimator (p_estcpu) is increased here.  resetpriority() will
942 * compute a different priority each time p_estcpu increases by
943 * INVERSE_ESTCPU_WEIGHT
944 * (until MAXPRI is reached).  The cpu usage estimator ramps up
945 * quite quickly when the process is running (linearly), and decays
946 * away exponentially, at a rate which is proportionally slower when
947 * the system is busy.  The basic principle is that the system will
948 * 90% forget that the process used a lot of CPU time in 5 * loadav
949 * seconds.  This causes the system to favor processes which haven't
950 * run much recently, and to round-robin among other processes.
951 */
952void
953schedclock(p)
954	struct proc *p;
955{
956
957	p->p_cpticks++;
958	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
959	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
960		resetpriority(p);
961		if (p->p_priority >= PUSER)
962			p->p_priority = p->p_usrpri;
963	}
964}
965