kern_synch.c revision 57704
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 57704 2000-03-02 22:03:49Z dufault $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63
64static void sched_setup __P((void *dummy));
65SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
66
67u_char	curpriority;
68int	hogticks;
69int	lbolt;
70int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
71
72static int	curpriority_cmp __P((struct proc *p));
73static void	endtsleep __P((void *));
74static void	maybe_resched __P((struct proc *chk));
75static void	roundrobin __P((void *arg));
76static void	schedcpu __P((void *arg));
77static void	updatepri __P((struct proc *p));
78
79static int
80sysctl_kern_quantum SYSCTL_HANDLER_ARGS
81{
82	int error, new_val;
83
84	new_val = sched_quantum * tick;
85	error = sysctl_handle_int(oidp, &new_val, 0, req);
86        if (error != 0 || req->newptr == NULL)
87		return (error);
88	if (new_val < tick)
89		return (EINVAL);
90	sched_quantum = new_val / tick;
91	hogticks = 2 * sched_quantum;
92	return (0);
93}
94
95SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
96	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
97
98/*-
99 * Compare priorities.  Return:
100 *     <0: priority of p < current priority
101 *      0: priority of p == current priority
102 *     >0: priority of p > current priority
103 * The priorities are the normal priorities or the normal realtime priorities
104 * if p is on the same scheduler as curproc.  Otherwise the process on the
105 * more realtimeish scheduler has lowest priority.  As usual, a higher
106 * priority really means a lower priority.
107 */
108static int
109curpriority_cmp(p)
110	struct proc *p;
111{
112	int c_class, p_class;
113
114	c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
115	p_class = RTP_PRIO_BASE(p->p_rtprio.type);
116	if (p_class != c_class)
117		return (p_class - c_class);
118	if (p_class == RTP_PRIO_NORMAL)
119		return (((int)p->p_priority - (int)curpriority) / PPQ);
120	return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
121}
122
123/*
124 * Arrange to reschedule if necessary, taking the priorities and
125 * schedulers into account.
126 */
127static void
128maybe_resched(chk)
129	struct proc *chk;
130{
131	struct proc *p = curproc; /* XXX */
132
133	/*
134	 * XXX idle scheduler still broken because proccess stays on idle
135	 * scheduler during waits (such as when getting FS locks).  If a
136	 * standard process becomes runaway cpu-bound, the system can lockup
137	 * due to idle-scheduler processes in wakeup never getting any cpu.
138	 */
139	if (p == NULL) {
140#if 0
141		need_resched();
142#endif
143	} else if (chk == p) {
144		/* We may need to yield if our priority has been raised. */
145		if (curpriority_cmp(chk) > 0)
146			need_resched();
147	} else if (curpriority_cmp(chk) < 0)
148		need_resched();
149}
150
151int
152roundrobin_interval(void)
153{
154	return (sched_quantum);
155}
156
157/*
158 * Force switch among equal priority processes every 100ms.
159 */
160/* ARGSUSED */
161static void
162roundrobin(arg)
163	void *arg;
164{
165#ifndef SMP
166 	struct proc *p = curproc; /* XXX */
167#endif
168
169#ifdef SMP
170	need_resched();
171	forward_roundrobin();
172#else
173 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
174 		need_resched();
175#endif
176
177 	timeout(roundrobin, NULL, sched_quantum);
178}
179
180/*
181 * Constants for digital decay and forget:
182 *	90% of (p_estcpu) usage in 5 * loadav time
183 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
184 *          Note that, as ps(1) mentions, this can let percentages
185 *          total over 100% (I've seen 137.9% for 3 processes).
186 *
187 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
188 *
189 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
190 * That is, the system wants to compute a value of decay such
191 * that the following for loop:
192 * 	for (i = 0; i < (5 * loadavg); i++)
193 * 		p_estcpu *= decay;
194 * will compute
195 * 	p_estcpu *= 0.1;
196 * for all values of loadavg:
197 *
198 * Mathematically this loop can be expressed by saying:
199 * 	decay ** (5 * loadavg) ~= .1
200 *
201 * The system computes decay as:
202 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
203 *
204 * We wish to prove that the system's computation of decay
205 * will always fulfill the equation:
206 * 	decay ** (5 * loadavg) ~= .1
207 *
208 * If we compute b as:
209 * 	b = 2 * loadavg
210 * then
211 * 	decay = b / (b + 1)
212 *
213 * We now need to prove two things:
214 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
215 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
216 *
217 * Facts:
218 *         For x close to zero, exp(x) =~ 1 + x, since
219 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
220 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
221 *         For x close to zero, ln(1+x) =~ x, since
222 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
223 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
224 *         ln(.1) =~ -2.30
225 *
226 * Proof of (1):
227 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
228 *	solving for factor,
229 *      ln(factor) =~ (-2.30/5*loadav), or
230 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
231 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
232 *
233 * Proof of (2):
234 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
235 *	solving for power,
236 *      power*ln(b/(b+1)) =~ -2.30, or
237 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
238 *
239 * Actual power values for the implemented algorithm are as follows:
240 *      loadav: 1       2       3       4
241 *      power:  5.68    10.32   14.94   19.55
242 */
243
244/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
245#define	loadfactor(loadav)	(2 * (loadav))
246#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
247
248/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
249static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
250SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
251
252/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
253static int	fscale __unused = FSCALE;
254SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
255
256/*
257 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
258 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
259 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
260 *
261 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
262 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
263 *
264 * If you don't want to bother with the faster/more-accurate formula, you
265 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
266 * (more general) method of calculating the %age of CPU used by a process.
267 */
268#define	CCPU_SHIFT	11
269
270/*
271 * Recompute process priorities, every hz ticks.
272 */
273/* ARGSUSED */
274static void
275schedcpu(arg)
276	void *arg;
277{
278	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
279	register struct proc *p;
280	register int realstathz, s;
281
282	realstathz = stathz ? stathz : hz;
283	LIST_FOREACH(p, &allproc, p_list) {
284		/*
285		 * Increment time in/out of memory and sleep time
286		 * (if sleeping).  We ignore overflow; with 16-bit int's
287		 * (remember them?) overflow takes 45 days.
288		 */
289		p->p_swtime++;
290		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
291			p->p_slptime++;
292		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
293		/*
294		 * If the process has slept the entire second,
295		 * stop recalculating its priority until it wakes up.
296		 */
297		if (p->p_slptime > 1)
298			continue;
299		s = splhigh();	/* prevent state changes and protect run queue */
300		/*
301		 * p_pctcpu is only for ps.
302		 */
303#if	(FSHIFT >= CCPU_SHIFT)
304		p->p_pctcpu += (realstathz == 100)?
305			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
306                	100 * (((fixpt_t) p->p_cpticks)
307				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
308#else
309		p->p_pctcpu += ((FSCALE - ccpu) *
310			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
311#endif
312		p->p_cpticks = 0;
313		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
314		resetpriority(p);
315		if (p->p_priority >= PUSER) {
316			if ((p != curproc) &&
317#ifdef SMP
318			    p->p_oncpu == 0xff && 	/* idle */
319#endif
320			    p->p_stat == SRUN &&
321			    (p->p_flag & P_INMEM) &&
322			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
323				remrunqueue(p);
324				p->p_priority = p->p_usrpri;
325				setrunqueue(p);
326			} else
327				p->p_priority = p->p_usrpri;
328		}
329		splx(s);
330	}
331	vmmeter();
332	wakeup((caddr_t)&lbolt);
333	timeout(schedcpu, (void *)0, hz);
334}
335
336/*
337 * Recalculate the priority of a process after it has slept for a while.
338 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
339 * least six times the loadfactor will decay p_estcpu to zero.
340 */
341static void
342updatepri(p)
343	register struct proc *p;
344{
345	register unsigned int newcpu = p->p_estcpu;
346	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
347
348	if (p->p_slptime > 5 * loadfac)
349		p->p_estcpu = 0;
350	else {
351		p->p_slptime--;	/* the first time was done in schedcpu */
352		while (newcpu && --p->p_slptime)
353			newcpu = decay_cpu(loadfac, newcpu);
354		p->p_estcpu = newcpu;
355	}
356	resetpriority(p);
357}
358
359/*
360 * We're only looking at 7 bits of the address; everything is
361 * aligned to 4, lots of things are aligned to greater powers
362 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
363 */
364#define TABLESIZE	128
365static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
366#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
367
368/*
369 * During autoconfiguration or after a panic, a sleep will simply
370 * lower the priority briefly to allow interrupts, then return.
371 * The priority to be used (safepri) is machine-dependent, thus this
372 * value is initialized and maintained in the machine-dependent layers.
373 * This priority will typically be 0, or the lowest priority
374 * that is safe for use on the interrupt stack; it can be made
375 * higher to block network software interrupts after panics.
376 */
377int safepri;
378
379void
380sleepinit(void)
381{
382	int i;
383
384	sched_quantum = hz/10;
385	hogticks = 2 * sched_quantum;
386	for (i = 0; i < TABLESIZE; i++)
387		TAILQ_INIT(&slpque[i]);
388}
389
390/*
391 * General sleep call.  Suspends the current process until a wakeup is
392 * performed on the specified identifier.  The process will then be made
393 * runnable with the specified priority.  Sleeps at most timo/hz seconds
394 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
395 * before and after sleeping, else signals are not checked.  Returns 0 if
396 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
397 * signal needs to be delivered, ERESTART is returned if the current system
398 * call should be restarted if possible, and EINTR is returned if the system
399 * call should be interrupted by the signal (return EINTR).
400 */
401int
402tsleep(ident, priority, wmesg, timo)
403	void *ident;
404	int priority, timo;
405	const char *wmesg;
406{
407	struct proc *p = curproc;
408	int s, sig, catch = priority & PCATCH;
409	struct callout_handle thandle;
410
411#ifdef KTRACE
412	if (p && KTRPOINT(p, KTR_CSW))
413		ktrcsw(p->p_tracep, 1, 0);
414#endif
415	s = splhigh();
416	if (cold || panicstr) {
417		/*
418		 * After a panic, or during autoconfiguration,
419		 * just give interrupts a chance, then just return;
420		 * don't run any other procs or panic below,
421		 * in case this is the idle process and already asleep.
422		 */
423		splx(safepri);
424		splx(s);
425		return (0);
426	}
427	KASSERT(p != NULL, ("tsleep1"));
428	KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
429	/*
430	 * Process may be sitting on a slpque if asleep() was called, remove
431	 * it before re-adding.
432	 */
433	if (p->p_wchan != NULL)
434		unsleep(p);
435
436	p->p_wchan = ident;
437	p->p_wmesg = wmesg;
438	p->p_slptime = 0;
439	p->p_priority = priority & PRIMASK;
440	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
441	if (timo)
442		thandle = timeout(endtsleep, (void *)p, timo);
443	/*
444	 * We put ourselves on the sleep queue and start our timeout
445	 * before calling CURSIG, as we could stop there, and a wakeup
446	 * or a SIGCONT (or both) could occur while we were stopped.
447	 * A SIGCONT would cause us to be marked as SSLEEP
448	 * without resuming us, thus we must be ready for sleep
449	 * when CURSIG is called.  If the wakeup happens while we're
450	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
451	 */
452	if (catch) {
453		p->p_flag |= P_SINTR;
454		if ((sig = CURSIG(p))) {
455			if (p->p_wchan)
456				unsleep(p);
457			p->p_stat = SRUN;
458			goto resume;
459		}
460		if (p->p_wchan == 0) {
461			catch = 0;
462			goto resume;
463		}
464	} else
465		sig = 0;
466	p->p_stat = SSLEEP;
467	p->p_stats->p_ru.ru_nvcsw++;
468	mi_switch();
469resume:
470	curpriority = p->p_usrpri;
471	splx(s);
472	p->p_flag &= ~P_SINTR;
473	if (p->p_flag & P_TIMEOUT) {
474		p->p_flag &= ~P_TIMEOUT;
475		if (sig == 0) {
476#ifdef KTRACE
477			if (KTRPOINT(p, KTR_CSW))
478				ktrcsw(p->p_tracep, 0, 0);
479#endif
480			return (EWOULDBLOCK);
481		}
482	} else if (timo)
483		untimeout(endtsleep, (void *)p, thandle);
484	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
485#ifdef KTRACE
486		if (KTRPOINT(p, KTR_CSW))
487			ktrcsw(p->p_tracep, 0, 0);
488#endif
489		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
490			return (EINTR);
491		return (ERESTART);
492	}
493#ifdef KTRACE
494	if (KTRPOINT(p, KTR_CSW))
495		ktrcsw(p->p_tracep, 0, 0);
496#endif
497	return (0);
498}
499
500/*
501 * asleep() - async sleep call.  Place process on wait queue and return
502 * immediately without blocking.  The process stays runnable until await()
503 * is called.  If ident is NULL, remove process from wait queue if it is still
504 * on one.
505 *
506 * Only the most recent sleep condition is effective when making successive
507 * calls to asleep() or when calling tsleep().
508 *
509 * The timeout, if any, is not initiated until await() is called.  The sleep
510 * priority, signal, and timeout is specified in the asleep() call but may be
511 * overriden in the await() call.
512 *
513 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
514 */
515
516int
517asleep(void *ident, int priority, const char *wmesg, int timo)
518{
519	struct proc *p = curproc;
520	int s;
521
522	/*
523	 * splhigh() while manipulating sleep structures and slpque.
524	 *
525	 * Remove preexisting wait condition (if any) and place process
526	 * on appropriate slpque, but do not put process to sleep.
527	 */
528
529	s = splhigh();
530
531	if (p->p_wchan != NULL)
532		unsleep(p);
533
534	if (ident) {
535		p->p_wchan = ident;
536		p->p_wmesg = wmesg;
537		p->p_slptime = 0;
538		p->p_asleep.as_priority = priority;
539		p->p_asleep.as_timo = timo;
540		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
541	}
542
543	splx(s);
544
545	return(0);
546}
547
548/*
549 * await() - wait for async condition to occur.   The process blocks until
550 * wakeup() is called on the most recent asleep() address.  If wakeup is called
551 * priority to await(), await() winds up being a NOP.
552 *
553 * If await() is called more then once (without an intervening asleep() call),
554 * await() is still effectively a NOP but it calls mi_switch() to give other
555 * processes some cpu before returning.  The process is left runnable.
556 *
557 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
558 */
559
560int
561await(int priority, int timo)
562{
563	struct proc *p = curproc;
564	int s;
565
566	s = splhigh();
567
568	if (p->p_wchan != NULL) {
569		struct callout_handle thandle;
570		int sig;
571		int catch;
572
573		/*
574		 * The call to await() can override defaults specified in
575		 * the original asleep().
576		 */
577		if (priority < 0)
578			priority = p->p_asleep.as_priority;
579		if (timo < 0)
580			timo = p->p_asleep.as_timo;
581
582		/*
583		 * Install timeout
584		 */
585
586		if (timo)
587			thandle = timeout(endtsleep, (void *)p, timo);
588
589		sig = 0;
590		catch = priority & PCATCH;
591
592		if (catch) {
593			p->p_flag |= P_SINTR;
594			if ((sig = CURSIG(p))) {
595				if (p->p_wchan)
596					unsleep(p);
597				p->p_stat = SRUN;
598				goto resume;
599			}
600			if (p->p_wchan == NULL) {
601				catch = 0;
602				goto resume;
603			}
604		}
605		p->p_stat = SSLEEP;
606		p->p_stats->p_ru.ru_nvcsw++;
607		mi_switch();
608resume:
609		curpriority = p->p_usrpri;
610
611		splx(s);
612		p->p_flag &= ~P_SINTR;
613		if (p->p_flag & P_TIMEOUT) {
614			p->p_flag &= ~P_TIMEOUT;
615			if (sig == 0) {
616#ifdef KTRACE
617				if (KTRPOINT(p, KTR_CSW))
618					ktrcsw(p->p_tracep, 0, 0);
619#endif
620				return (EWOULDBLOCK);
621			}
622		} else if (timo)
623			untimeout(endtsleep, (void *)p, thandle);
624		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
625#ifdef KTRACE
626			if (KTRPOINT(p, KTR_CSW))
627				ktrcsw(p->p_tracep, 0, 0);
628#endif
629			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
630				return (EINTR);
631			return (ERESTART);
632		}
633#ifdef KTRACE
634		if (KTRPOINT(p, KTR_CSW))
635			ktrcsw(p->p_tracep, 0, 0);
636#endif
637	} else {
638		/*
639		 * If as_priority is 0, await() has been called without an
640		 * intervening asleep().  We are still effectively a NOP,
641		 * but we call mi_switch() for safety.
642		 */
643
644		if (p->p_asleep.as_priority == 0) {
645			p->p_stats->p_ru.ru_nvcsw++;
646			mi_switch();
647		}
648		splx(s);
649	}
650
651	/*
652	 * clear p_asleep.as_priority as an indication that await() has been
653	 * called.  If await() is called again without an intervening asleep(),
654	 * await() is still effectively a NOP but the above mi_switch() code
655	 * is triggered as a safety.
656	 */
657	p->p_asleep.as_priority = 0;
658
659	return (0);
660}
661
662/*
663 * Implement timeout for tsleep or asleep()/await()
664 *
665 * If process hasn't been awakened (wchan non-zero),
666 * set timeout flag and undo the sleep.  If proc
667 * is stopped, just unsleep so it will remain stopped.
668 */
669static void
670endtsleep(arg)
671	void *arg;
672{
673	register struct proc *p;
674	int s;
675
676	p = (struct proc *)arg;
677	s = splhigh();
678	if (p->p_wchan) {
679		if (p->p_stat == SSLEEP)
680			setrunnable(p);
681		else
682			unsleep(p);
683		p->p_flag |= P_TIMEOUT;
684	}
685	splx(s);
686}
687
688/*
689 * Remove a process from its wait queue
690 */
691void
692unsleep(p)
693	register struct proc *p;
694{
695	int s;
696
697	s = splhigh();
698	if (p->p_wchan) {
699		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
700		p->p_wchan = 0;
701	}
702	splx(s);
703}
704
705/*
706 * Make all processes sleeping on the specified identifier runnable.
707 */
708void
709wakeup(ident)
710	register void *ident;
711{
712	register struct slpquehead *qp;
713	register struct proc *p;
714	int s;
715
716	s = splhigh();
717	qp = &slpque[LOOKUP(ident)];
718restart:
719	TAILQ_FOREACH(p, qp, p_procq) {
720		if (p->p_wchan == ident) {
721			TAILQ_REMOVE(qp, p, p_procq);
722			p->p_wchan = 0;
723			if (p->p_stat == SSLEEP) {
724				/* OPTIMIZED EXPANSION OF setrunnable(p); */
725				if (p->p_slptime > 1)
726					updatepri(p);
727				p->p_slptime = 0;
728				p->p_stat = SRUN;
729				if (p->p_flag & P_INMEM) {
730					setrunqueue(p);
731					maybe_resched(p);
732				} else {
733					p->p_flag |= P_SWAPINREQ;
734					wakeup((caddr_t)&proc0);
735				}
736				/* END INLINE EXPANSION */
737				goto restart;
738			}
739		}
740	}
741	splx(s);
742}
743
744/*
745 * Make a process sleeping on the specified identifier runnable.
746 * May wake more than one process if a target prcoess is currently
747 * swapped out.
748 */
749void
750wakeup_one(ident)
751	register void *ident;
752{
753	register struct slpquehead *qp;
754	register struct proc *p;
755	int s;
756
757	s = splhigh();
758	qp = &slpque[LOOKUP(ident)];
759
760	TAILQ_FOREACH(p, qp, p_procq) {
761		if (p->p_wchan == ident) {
762			TAILQ_REMOVE(qp, p, p_procq);
763			p->p_wchan = 0;
764			if (p->p_stat == SSLEEP) {
765				/* OPTIMIZED EXPANSION OF setrunnable(p); */
766				if (p->p_slptime > 1)
767					updatepri(p);
768				p->p_slptime = 0;
769				p->p_stat = SRUN;
770				if (p->p_flag & P_INMEM) {
771					setrunqueue(p);
772					maybe_resched(p);
773					break;
774				} else {
775					p->p_flag |= P_SWAPINREQ;
776					wakeup((caddr_t)&proc0);
777				}
778				/* END INLINE EXPANSION */
779			}
780		}
781	}
782	splx(s);
783}
784
785/*
786 * The machine independent parts of mi_switch().
787 * Must be called at splstatclock() or higher.
788 */
789void
790mi_switch()
791{
792	struct timeval new_switchtime;
793	register struct proc *p = curproc;	/* XXX */
794	register struct rlimit *rlim;
795	int x;
796
797	/*
798	 * XXX this spl is almost unnecessary.  It is partly to allow for
799	 * sloppy callers that don't do it (issignal() via CURSIG() is the
800	 * main offender).  It is partly to work around a bug in the i386
801	 * cpu_switch() (the ipl is not preserved).  We ran for years
802	 * without it.  I think there was only a interrupt latency problem.
803	 * The main caller, tsleep(), does an splx() a couple of instructions
804	 * after calling here.  The buggy caller, issignal(), usually calls
805	 * here at spl0() and sometimes returns at splhigh().  The process
806	 * then runs for a little too long at splhigh().  The ipl gets fixed
807	 * when the process returns to user mode (or earlier).
808	 *
809	 * It would probably be better to always call here at spl0(). Callers
810	 * are prepared to give up control to another process, so they must
811	 * be prepared to be interrupted.  The clock stuff here may not
812	 * actually need splstatclock().
813	 */
814	x = splstatclock();
815
816#ifdef SIMPLELOCK_DEBUG
817	if (p->p_simple_locks)
818		printf("sleep: holding simple lock\n");
819#endif
820	/*
821	 * Compute the amount of time during which the current
822	 * process was running, and add that to its total so far.
823	 */
824	microuptime(&new_switchtime);
825	if (timevalcmp(&new_switchtime, &switchtime, <)) {
826		printf("microuptime() went backwards (%ld.%06ld -> %ld,%06ld)\n",
827		    switchtime.tv_sec, switchtime.tv_usec,
828		    new_switchtime.tv_sec, new_switchtime.tv_usec);
829		new_switchtime = switchtime;
830	} else {
831		p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) +
832		    (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
833	}
834
835	/*
836	 * Check if the process exceeds its cpu resource allocation.
837	 * If over max, kill it.
838	 */
839	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
840	    p->p_runtime > p->p_limit->p_cpulimit) {
841		rlim = &p->p_rlimit[RLIMIT_CPU];
842		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
843			killproc(p, "exceeded maximum CPU limit");
844		} else {
845			psignal(p, SIGXCPU);
846			if (rlim->rlim_cur < rlim->rlim_max) {
847				/* XXX: we should make a private copy */
848				rlim->rlim_cur += 5;
849			}
850		}
851	}
852
853	/*
854	 * Pick a new current process and record its start time.
855	 */
856	cnt.v_swtch++;
857	switchtime = new_switchtime;
858	cpu_switch(p);
859	if (switchtime.tv_sec == 0)
860		microuptime(&switchtime);
861	switchticks = ticks;
862
863	splx(x);
864}
865
866/*
867 * Change process state to be runnable,
868 * placing it on the run queue if it is in memory,
869 * and awakening the swapper if it isn't in memory.
870 */
871void
872setrunnable(p)
873	register struct proc *p;
874{
875	register int s;
876
877	s = splhigh();
878	switch (p->p_stat) {
879	case 0:
880	case SRUN:
881	case SZOMB:
882	default:
883		panic("setrunnable");
884	case SSTOP:
885	case SSLEEP:
886		unsleep(p);		/* e.g. when sending signals */
887		break;
888
889	case SIDL:
890		break;
891	}
892	p->p_stat = SRUN;
893	if (p->p_flag & P_INMEM)
894		setrunqueue(p);
895	splx(s);
896	if (p->p_slptime > 1)
897		updatepri(p);
898	p->p_slptime = 0;
899	if ((p->p_flag & P_INMEM) == 0) {
900		p->p_flag |= P_SWAPINREQ;
901		wakeup((caddr_t)&proc0);
902	}
903	else
904		maybe_resched(p);
905}
906
907/*
908 * Compute the priority of a process when running in user mode.
909 * Arrange to reschedule if the resulting priority is better
910 * than that of the current process.
911 */
912void
913resetpriority(p)
914	register struct proc *p;
915{
916	register unsigned int newpriority;
917
918	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
919		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
920		    NICE_WEIGHT * p->p_nice;
921		newpriority = min(newpriority, MAXPRI);
922		p->p_usrpri = newpriority;
923	}
924	maybe_resched(p);
925}
926
927/* ARGSUSED */
928static void
929sched_setup(dummy)
930	void *dummy;
931{
932	/* Kick off timeout driven events by calling first time. */
933	roundrobin(NULL);
934	schedcpu(NULL);
935}
936
937/*
938 * We adjust the priority of the current process.  The priority of
939 * a process gets worse as it accumulates CPU time.  The cpu usage
940 * estimator (p_estcpu) is increased here.  resetpriority() will
941 * compute a different priority each time p_estcpu increases by
942 * INVERSE_ESTCPU_WEIGHT
943 * (until MAXPRI is reached).  The cpu usage estimator ramps up
944 * quite quickly when the process is running (linearly), and decays
945 * away exponentially, at a rate which is proportionally slower when
946 * the system is busy.  The basic principle is that the system will
947 * 90% forget that the process used a lot of CPU time in 5 * loadav
948 * seconds.  This causes the system to favor processes which haven't
949 * run much recently, and to round-robin among other processes.
950 */
951void
952schedclock(p)
953	struct proc *p;
954{
955
956	p->p_cpticks++;
957	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
958	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
959		resetpriority(p);
960		if (p->p_priority >= PUSER)
961			p->p_priority = p->p_usrpri;
962	}
963}
964