kern_synch.c revision 44218
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.72 1999/01/10 01:58:24 eivind Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64
65static void rqinit __P((void *));
66SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67
68u_char	curpriority;		/* usrpri of curproc */
69int	hogticks;
70int	lbolt;			/* once a second sleep address */
71
72static void	endtsleep __P((void *));
73static void	roundrobin __P((void *arg));
74static void	schedcpu __P((void *arg));
75static void	updatepri __P((struct proc *p));
76
77#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
78#ifndef DEFAULT_SCHEDULE_QUANTUM
79#define DEFAULT_SCHEDULE_QUANTUM 10
80#endif
81static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
82
83static int
84sysctl_kern_quantum SYSCTL_HANDLER_ARGS
85{
86	int error;
87	int new_val = quantum;
88
89	new_val = quantum;
90	error = sysctl_handle_int(oidp, &new_val, 0, req);
91	if (error == 0) {
92		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
93			quantum = new_val;
94		} else {
95			error = EINVAL;
96		}
97	}
98	hogticks = 2 * (hz / quantum);
99	return (error);
100}
101
102SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
103	0, sizeof quantum, sysctl_kern_quantum, "I", "");
104
105/* maybe_resched: Decide if you need to reschedule or not
106 * taking the priorities and schedulers into account.
107 */
108static void maybe_resched(struct proc *chk)
109{
110	struct proc *p = curproc; /* XXX */
111
112	/*
113	 * Compare priorities if the new process is on the same scheduler,
114	 * otherwise the one on the more realtimeish scheduler wins.
115	 *
116	 * XXX idle scheduler still broken because proccess stays on idle
117	 * scheduler during waits (such as when getting FS locks).  If a
118	 * standard process becomes runaway cpu-bound, the system can lockup
119	 * due to idle-scheduler processes in wakeup never getting any cpu.
120	 */
121	if (p == 0 ||
122		(chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
123		RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
124	) {
125		need_resched();
126	}
127}
128
129#define ROUNDROBIN_INTERVAL (hz / quantum)
130int roundrobin_interval(void)
131{
132	return ROUNDROBIN_INTERVAL;
133}
134
135/*
136 * Force switch among equal priority processes every 100ms.
137 */
138/* ARGSUSED */
139static void
140roundrobin(arg)
141	void *arg;
142{
143#ifndef SMP
144 	struct proc *p = curproc; /* XXX */
145#endif
146
147#ifdef SMP
148	need_resched();
149	forward_roundrobin();
150#else
151 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
152 		need_resched();
153#endif
154
155 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
156}
157
158/*
159 * Constants for digital decay and forget:
160 *	90% of (p_estcpu) usage in 5 * loadav time
161 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
162 *          Note that, as ps(1) mentions, this can let percentages
163 *          total over 100% (I've seen 137.9% for 3 processes).
164 *
165 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
166 *
167 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
168 * That is, the system wants to compute a value of decay such
169 * that the following for loop:
170 * 	for (i = 0; i < (5 * loadavg); i++)
171 * 		p_estcpu *= decay;
172 * will compute
173 * 	p_estcpu *= 0.1;
174 * for all values of loadavg:
175 *
176 * Mathematically this loop can be expressed by saying:
177 * 	decay ** (5 * loadavg) ~= .1
178 *
179 * The system computes decay as:
180 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
181 *
182 * We wish to prove that the system's computation of decay
183 * will always fulfill the equation:
184 * 	decay ** (5 * loadavg) ~= .1
185 *
186 * If we compute b as:
187 * 	b = 2 * loadavg
188 * then
189 * 	decay = b / (b + 1)
190 *
191 * We now need to prove two things:
192 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
193 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
194 *
195 * Facts:
196 *         For x close to zero, exp(x) =~ 1 + x, since
197 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
198 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
199 *         For x close to zero, ln(1+x) =~ x, since
200 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
201 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
202 *         ln(.1) =~ -2.30
203 *
204 * Proof of (1):
205 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
206 *	solving for factor,
207 *      ln(factor) =~ (-2.30/5*loadav), or
208 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
209 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
210 *
211 * Proof of (2):
212 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
213 *	solving for power,
214 *      power*ln(b/(b+1)) =~ -2.30, or
215 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
216 *
217 * Actual power values for the implemented algorithm are as follows:
218 *      loadav: 1       2       3       4
219 *      power:  5.68    10.32   14.94   19.55
220 */
221
222/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
223#define	loadfactor(loadav)	(2 * (loadav))
224#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
225
226/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
227static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
228SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
229
230/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
231static int	fscale __unused = FSCALE;
232SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
233
234/*
235 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
236 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
237 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
238 *
239 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
240 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
241 *
242 * If you don't want to bother with the faster/more-accurate formula, you
243 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
244 * (more general) method of calculating the %age of CPU used by a process.
245 */
246#define	CCPU_SHIFT	11
247
248/*
249 * Recompute process priorities, every hz ticks.
250 */
251/* ARGSUSED */
252static void
253schedcpu(arg)
254	void *arg;
255{
256	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
257	register struct proc *p;
258	register int realstathz, s;
259	register unsigned int newcpu;
260
261	realstathz = stathz ? stathz : hz;
262	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
263		/*
264		 * Increment time in/out of memory and sleep time
265		 * (if sleeping).  We ignore overflow; with 16-bit int's
266		 * (remember them?) overflow takes 45 days.
267		 */
268		p->p_swtime++;
269		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
270			p->p_slptime++;
271		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
272		/*
273		 * If the process has slept the entire second,
274		 * stop recalculating its priority until it wakes up.
275		 */
276		if (p->p_slptime > 1)
277			continue;
278		s = splhigh();	/* prevent state changes and protect run queue */
279		/*
280		 * p_pctcpu is only for ps.
281		 */
282#if	(FSHIFT >= CCPU_SHIFT)
283		p->p_pctcpu += (realstathz == 100)?
284			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
285                	100 * (((fixpt_t) p->p_cpticks)
286				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
287#else
288		p->p_pctcpu += ((FSCALE - ccpu) *
289			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
290#endif
291		p->p_cpticks = 0;
292		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
293		p->p_estcpu = min(newcpu, UCHAR_MAX);
294		resetpriority(p);
295		if (p->p_priority >= PUSER) {
296#define	PPQ	(128 / NQS)		/* priorities per queue */
297			if ((p != curproc) &&
298#ifdef SMP
299			    (u_char)p->p_oncpu == 0xff && 	/* idle */
300#endif
301			    p->p_stat == SRUN &&
302			    (p->p_flag & P_INMEM) &&
303			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
304				remrq(p);
305				p->p_priority = p->p_usrpri;
306				setrunqueue(p);
307			} else
308				p->p_priority = p->p_usrpri;
309		}
310		splx(s);
311	}
312	vmmeter();
313	wakeup((caddr_t)&lbolt);
314	timeout(schedcpu, (void *)0, hz);
315}
316
317/*
318 * Recalculate the priority of a process after it has slept for a while.
319 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
320 * least six times the loadfactor will decay p_estcpu to zero.
321 */
322static void
323updatepri(p)
324	register struct proc *p;
325{
326	register unsigned int newcpu = p->p_estcpu;
327	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
328
329	if (p->p_slptime > 5 * loadfac)
330		p->p_estcpu = 0;
331	else {
332		p->p_slptime--;	/* the first time was done in schedcpu */
333		while (newcpu && --p->p_slptime)
334			newcpu = (int) decay_cpu(loadfac, newcpu);
335		p->p_estcpu = min(newcpu, UCHAR_MAX);
336	}
337	resetpriority(p);
338}
339
340/*
341 * We're only looking at 7 bits of the address; everything is
342 * aligned to 4, lots of things are aligned to greater powers
343 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
344 */
345#define TABLESIZE	128
346static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
347#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
348
349/*
350 * During autoconfiguration or after a panic, a sleep will simply
351 * lower the priority briefly to allow interrupts, then return.
352 * The priority to be used (safepri) is machine-dependent, thus this
353 * value is initialized and maintained in the machine-dependent layers.
354 * This priority will typically be 0, or the lowest priority
355 * that is safe for use on the interrupt stack; it can be made
356 * higher to block network software interrupts after panics.
357 */
358int safepri;
359
360void
361sleepinit()
362{
363	int i;
364
365	hogticks = 2 * (hz / quantum);
366	for (i = 0; i < TABLESIZE; i++)
367		TAILQ_INIT(&slpque[i]);
368}
369
370/*
371 * General sleep call.  Suspends the current process until a wakeup is
372 * performed on the specified identifier.  The process will then be made
373 * runnable with the specified priority.  Sleeps at most timo/hz seconds
374 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
375 * before and after sleeping, else signals are not checked.  Returns 0 if
376 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
377 * signal needs to be delivered, ERESTART is returned if the current system
378 * call should be restarted if possible, and EINTR is returned if the system
379 * call should be interrupted by the signal (return EINTR).
380 */
381int
382tsleep(ident, priority, wmesg, timo)
383	void *ident;
384	int priority, timo;
385	const char *wmesg;
386{
387	struct proc *p = curproc;
388	int s, sig, catch = priority & PCATCH;
389	struct callout_handle thandle;
390
391#ifdef KTRACE
392	if (KTRPOINT(p, KTR_CSW))
393		ktrcsw(p->p_tracep, 1, 0);
394#endif
395	s = splhigh();
396	if (cold || panicstr) {
397		/*
398		 * After a panic, or during autoconfiguration,
399		 * just give interrupts a chance, then just return;
400		 * don't run any other procs or panic below,
401		 * in case this is the idle process and already asleep.
402		 */
403		splx(safepri);
404		splx(s);
405		return (0);
406	}
407	KASSERT(p != NULL, ("tsleep1"));
408	KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
409	/*
410	 * Process may be sitting on a slpque if asleep() was called, remove
411	 * it before re-adding.
412	 */
413	if (p->p_wchan != NULL)
414		unsleep(p);
415
416	p->p_wchan = ident;
417	p->p_wmesg = wmesg;
418	p->p_slptime = 0;
419	p->p_priority = priority & PRIMASK;
420	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
421	if (timo)
422		thandle = timeout(endtsleep, (void *)p, timo);
423	/*
424	 * We put ourselves on the sleep queue and start our timeout
425	 * before calling CURSIG, as we could stop there, and a wakeup
426	 * or a SIGCONT (or both) could occur while we were stopped.
427	 * A SIGCONT would cause us to be marked as SSLEEP
428	 * without resuming us, thus we must be ready for sleep
429	 * when CURSIG is called.  If the wakeup happens while we're
430	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
431	 */
432	if (catch) {
433		p->p_flag |= P_SINTR;
434		if ((sig = CURSIG(p))) {
435			if (p->p_wchan)
436				unsleep(p);
437			p->p_stat = SRUN;
438			goto resume;
439		}
440		if (p->p_wchan == 0) {
441			catch = 0;
442			goto resume;
443		}
444	} else
445		sig = 0;
446	p->p_stat = SSLEEP;
447	p->p_stats->p_ru.ru_nvcsw++;
448	mi_switch();
449resume:
450	curpriority = p->p_usrpri;
451	splx(s);
452	p->p_flag &= ~P_SINTR;
453	if (p->p_flag & P_TIMEOUT) {
454		p->p_flag &= ~P_TIMEOUT;
455		if (sig == 0) {
456#ifdef KTRACE
457			if (KTRPOINT(p, KTR_CSW))
458				ktrcsw(p->p_tracep, 0, 0);
459#endif
460			return (EWOULDBLOCK);
461		}
462	} else if (timo)
463		untimeout(endtsleep, (void *)p, thandle);
464	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
465#ifdef KTRACE
466		if (KTRPOINT(p, KTR_CSW))
467			ktrcsw(p->p_tracep, 0, 0);
468#endif
469		if (p->p_sigacts->ps_sigintr & sigmask(sig))
470			return (EINTR);
471		return (ERESTART);
472	}
473#ifdef KTRACE
474	if (KTRPOINT(p, KTR_CSW))
475		ktrcsw(p->p_tracep, 0, 0);
476#endif
477	return (0);
478}
479
480/*
481 * asleep() - async sleep call.  Place process on wait queue and return
482 * immediately without blocking.  The process stays runnable until await()
483 * is called.  If ident is NULL, remove process from wait queue if it is still
484 * on one.
485 *
486 * Only the most recent sleep condition is effective when making successive
487 * calls to asleep() or when calling tsleep().
488 *
489 * The timeout, if any, is not initiated until await() is called.  The sleep
490 * priority, signal, and timeout is specified in the asleep() call but may be
491 * overriden in the await() call.
492 *
493 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
494 */
495
496int
497asleep(void *ident, int priority, const char *wmesg, int timo)
498{
499	struct proc *p = curproc;
500	int s;
501
502	/*
503	 * splhigh() while manipulating sleep structures and slpque.
504	 *
505	 * Remove preexisting wait condition (if any) and place process
506	 * on appropriate slpque, but do not put process to sleep.
507	 */
508
509	s = splhigh();
510
511	if (p->p_wchan != NULL)
512		unsleep(p);
513
514	if (ident) {
515		p->p_wchan = ident;
516		p->p_wmesg = wmesg;
517		p->p_slptime = 0;
518		p->p_asleep.as_priority = priority;
519		p->p_asleep.as_timo = timo;
520		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
521	}
522
523	splx(s);
524
525	return(0);
526}
527
528/*
529 * await() - wait for async condition to occur.   The process blocks until
530 * wakeup() is called on the most recent asleep() address.  If wakeup is called
531 * priority to await(), await() winds up being a NOP.
532 *
533 * If await() is called more then once (without an intervening asleep() call),
534 * await() is still effectively a NOP but it calls mi_switch() to give other
535 * processes some cpu before returning.  The process is left runnable.
536 *
537 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
538 */
539
540int
541await(int priority, int timo)
542{
543	struct proc *p = curproc;
544	int s;
545
546	s = splhigh();
547
548	if (p->p_wchan != NULL) {
549		struct callout_handle thandle;
550		int sig;
551		int catch;
552
553		/*
554		 * The call to await() can override defaults specified in
555		 * the original asleep().
556		 */
557		if (priority < 0)
558			priority = p->p_asleep.as_priority;
559		if (timo < 0)
560			timo = p->p_asleep.as_timo;
561
562		/*
563		 * Install timeout
564		 */
565
566		if (timo)
567			thandle = timeout(endtsleep, (void *)p, timo);
568
569		sig = 0;
570		catch = priority & PCATCH;
571
572		if (catch) {
573			p->p_flag |= P_SINTR;
574			if ((sig = CURSIG(p))) {
575				if (p->p_wchan)
576					unsleep(p);
577				p->p_stat = SRUN;
578				goto resume;
579			}
580			if (p->p_wchan == NULL) {
581				catch = 0;
582				goto resume;
583			}
584		}
585		p->p_stat = SSLEEP;
586		p->p_stats->p_ru.ru_nvcsw++;
587		mi_switch();
588resume:
589		curpriority = p->p_usrpri;
590
591		splx(s);
592		p->p_flag &= ~P_SINTR;
593		if (p->p_flag & P_TIMEOUT) {
594			p->p_flag &= ~P_TIMEOUT;
595			if (sig == 0) {
596#ifdef KTRACE
597				if (KTRPOINT(p, KTR_CSW))
598					ktrcsw(p->p_tracep, 0, 0);
599#endif
600				return (EWOULDBLOCK);
601			}
602		} else if (timo)
603			untimeout(endtsleep, (void *)p, thandle);
604		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
605#ifdef KTRACE
606			if (KTRPOINT(p, KTR_CSW))
607				ktrcsw(p->p_tracep, 0, 0);
608#endif
609			if (p->p_sigacts->ps_sigintr & sigmask(sig))
610				return (EINTR);
611			return (ERESTART);
612		}
613#ifdef KTRACE
614		if (KTRPOINT(p, KTR_CSW))
615			ktrcsw(p->p_tracep, 0, 0);
616#endif
617	} else {
618		/*
619		 * If as_priority is 0, await() has been called without an
620		 * intervening asleep().  We are still effectively a NOP,
621		 * but we call mi_switch() for safety.
622		 */
623
624		if (p->p_asleep.as_priority == 0) {
625			p->p_stats->p_ru.ru_nvcsw++;
626			mi_switch();
627		}
628		splx(s);
629	}
630
631	/*
632	 * clear p_asleep.as_priority as an indication that await() has been
633	 * called.  If await() is called again without an intervening asleep(),
634	 * await() is still effectively a NOP but the above mi_switch() code
635	 * is triggered as a safety.
636	 */
637	p->p_asleep.as_priority = 0;
638
639	return (0);
640}
641
642/*
643 * Implement timeout for tsleep or asleep()/await()
644 *
645 * If process hasn't been awakened (wchan non-zero),
646 * set timeout flag and undo the sleep.  If proc
647 * is stopped, just unsleep so it will remain stopped.
648 */
649static void
650endtsleep(arg)
651	void *arg;
652{
653	register struct proc *p;
654	int s;
655
656	p = (struct proc *)arg;
657	s = splhigh();
658	if (p->p_wchan) {
659		if (p->p_stat == SSLEEP)
660			setrunnable(p);
661		else
662			unsleep(p);
663		p->p_flag |= P_TIMEOUT;
664	}
665	splx(s);
666}
667
668/*
669 * Remove a process from its wait queue
670 */
671void
672unsleep(p)
673	register struct proc *p;
674{
675	int s;
676
677	s = splhigh();
678	if (p->p_wchan) {
679		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
680		p->p_wchan = 0;
681	}
682	splx(s);
683}
684
685/*
686 * Make all processes sleeping on the specified identifier runnable.
687 */
688void
689wakeup(ident)
690	register void *ident;
691{
692	register struct slpquehead *qp;
693	register struct proc *p;
694	int s;
695
696	s = splhigh();
697	qp = &slpque[LOOKUP(ident)];
698restart:
699	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
700		if (p->p_wchan == ident) {
701			TAILQ_REMOVE(qp, p, p_procq);
702			p->p_wchan = 0;
703			if (p->p_stat == SSLEEP) {
704				/* OPTIMIZED EXPANSION OF setrunnable(p); */
705				if (p->p_slptime > 1)
706					updatepri(p);
707				p->p_slptime = 0;
708				p->p_stat = SRUN;
709				if (p->p_flag & P_INMEM) {
710					setrunqueue(p);
711					maybe_resched(p);
712				} else {
713					p->p_flag |= P_SWAPINREQ;
714					wakeup((caddr_t)&proc0);
715				}
716				/* END INLINE EXPANSION */
717				goto restart;
718			}
719		}
720	}
721	splx(s);
722}
723
724/*
725 * Make a process sleeping on the specified identifier runnable.
726 * May wake more than one process if a target prcoess is currently
727 * swapped out.
728 */
729void
730wakeup_one(ident)
731	register void *ident;
732{
733	register struct slpquehead *qp;
734	register struct proc *p;
735	int s;
736
737	s = splhigh();
738	qp = &slpque[LOOKUP(ident)];
739
740	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
741		if (p->p_wchan == ident) {
742			TAILQ_REMOVE(qp, p, p_procq);
743			p->p_wchan = 0;
744			if (p->p_stat == SSLEEP) {
745				/* OPTIMIZED EXPANSION OF setrunnable(p); */
746				if (p->p_slptime > 1)
747					updatepri(p);
748				p->p_slptime = 0;
749				p->p_stat = SRUN;
750				if (p->p_flag & P_INMEM) {
751					setrunqueue(p);
752					maybe_resched(p);
753					break;
754				} else {
755					p->p_flag |= P_SWAPINREQ;
756					wakeup((caddr_t)&proc0);
757				}
758				/* END INLINE EXPANSION */
759			}
760		}
761	}
762	splx(s);
763}
764
765/*
766 * The machine independent parts of mi_switch().
767 * Must be called at splstatclock() or higher.
768 */
769void
770mi_switch()
771{
772	register struct proc *p = curproc;	/* XXX */
773	register struct rlimit *rlim;
774	int x;
775
776	/*
777	 * XXX this spl is almost unnecessary.  It is partly to allow for
778	 * sloppy callers that don't do it (issignal() via CURSIG() is the
779	 * main offender).  It is partly to work around a bug in the i386
780	 * cpu_switch() (the ipl is not preserved).  We ran for years
781	 * without it.  I think there was only a interrupt latency problem.
782	 * The main caller, tsleep(), does an splx() a couple of instructions
783	 * after calling here.  The buggy caller, issignal(), usually calls
784	 * here at spl0() and sometimes returns at splhigh().  The process
785	 * then runs for a little too long at splhigh().  The ipl gets fixed
786	 * when the process returns to user mode (or earlier).
787	 *
788	 * It would probably be better to always call here at spl0(). Callers
789	 * are prepared to give up control to another process, so they must
790	 * be prepared to be interrupted.  The clock stuff here may not
791	 * actually need splstatclock().
792	 */
793	x = splstatclock();
794
795#ifdef SIMPLELOCK_DEBUG
796	if (p->p_simple_locks)
797		printf("sleep: holding simple lock\n");
798#endif
799	/*
800	 * Compute the amount of time during which the current
801	 * process was running, and add that to its total so far.
802	 */
803	microuptime(&switchtime);
804	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
805	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
806
807	/*
808	 * Check if the process exceeds its cpu resource allocation.
809	 * If over max, kill it.
810	 */
811	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
812	    p->p_runtime > p->p_limit->p_cpulimit) {
813		rlim = &p->p_rlimit[RLIMIT_CPU];
814		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
815			killproc(p, "exceeded maximum CPU limit");
816		} else {
817			psignal(p, SIGXCPU);
818			if (rlim->rlim_cur < rlim->rlim_max) {
819				/* XXX: we should make a private copy */
820				rlim->rlim_cur += 5;
821			}
822		}
823	}
824
825	/*
826	 * Pick a new current process and record its start time.
827	 */
828	cnt.v_swtch++;
829	cpu_switch(p);
830	if (switchtime.tv_sec)
831		p->p_switchtime = switchtime;
832	else
833		microuptime(&p->p_switchtime);
834	switchticks = ticks;
835
836	splx(x);
837}
838
839/*
840 * Initialize the (doubly-linked) run queues
841 * to be empty.
842 */
843/* ARGSUSED*/
844static void
845rqinit(dummy)
846	void *dummy;
847{
848	register int i;
849
850	for (i = 0; i < NQS; i++) {
851		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
852		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
853		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
854	}
855}
856
857/*
858 * Change process state to be runnable,
859 * placing it on the run queue if it is in memory,
860 * and awakening the swapper if it isn't in memory.
861 */
862void
863setrunnable(p)
864	register struct proc *p;
865{
866	register int s;
867
868	s = splhigh();
869	switch (p->p_stat) {
870	case 0:
871	case SRUN:
872	case SZOMB:
873	default:
874		panic("setrunnable");
875	case SSTOP:
876	case SSLEEP:
877		unsleep(p);		/* e.g. when sending signals */
878		break;
879
880	case SIDL:
881		break;
882	}
883	p->p_stat = SRUN;
884	if (p->p_flag & P_INMEM)
885		setrunqueue(p);
886	splx(s);
887	if (p->p_slptime > 1)
888		updatepri(p);
889	p->p_slptime = 0;
890	if ((p->p_flag & P_INMEM) == 0) {
891		p->p_flag |= P_SWAPINREQ;
892		wakeup((caddr_t)&proc0);
893	}
894	else
895		maybe_resched(p);
896}
897
898/*
899 * Compute the priority of a process when running in user mode.
900 * Arrange to reschedule if the resulting priority is better
901 * than that of the current process.
902 */
903void
904resetpriority(p)
905	register struct proc *p;
906{
907	register unsigned int newpriority;
908
909	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
910		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
911		newpriority = min(newpriority, MAXPRI);
912		p->p_usrpri = newpriority;
913	}
914	maybe_resched(p);
915}
916
917/* ARGSUSED */
918static void sched_setup __P((void *dummy));
919static void
920sched_setup(dummy)
921	void *dummy;
922{
923	/* Kick off timeout driven events by calling first time. */
924	roundrobin(NULL);
925	schedcpu(NULL);
926}
927SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
928
929