kern_synch.c revision 41359
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.65 1998/10/25 20:11:36 bde Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64
65static void rqinit __P((void *));
66SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67
68u_char	curpriority;		/* usrpri of curproc */
69int	lbolt;			/* once a second sleep address */
70
71static void	endtsleep __P((void *));
72static void	roundrobin __P((void *arg));
73static void	schedcpu __P((void *arg));
74static void	updatepri __P((struct proc *p));
75
76#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
77#ifndef DEFAULT_SCHEDULE_QUANTUM
78#define DEFAULT_SCHEDULE_QUANTUM 10
79#endif
80static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
81
82static int
83sysctl_kern_quantum SYSCTL_HANDLER_ARGS
84{
85	int error;
86	int new_val = quantum;
87
88	new_val = quantum;
89	error = sysctl_handle_int(oidp, &new_val, 0, req);
90	if (error == 0) {
91		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
92			quantum = new_val;
93		} else {
94			error = EINVAL;
95		}
96	}
97	return (error);
98}
99
100SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
101	0, sizeof quantum, sysctl_kern_quantum, "I", "");
102
103/* maybe_resched: Decide if you need to reschedule or not
104 * taking the priorities and schedulers into account.
105 */
106static void maybe_resched(struct proc *chk)
107{
108	struct proc *p = curproc; /* XXX */
109
110	/*
111	 * Compare priorities if the new process is on the same scheduler,
112	 * otherwise the one on the more realtimeish scheduler wins.
113	 *
114	 * XXX idle scheduler still broken because proccess stays on idle
115	 * scheduler during waits (such as when getting FS locks).  If a
116	 * standard process becomes runaway cpu-bound, the system can lockup
117	 * due to idle-scheduler processes in wakeup never getting any cpu.
118	 */
119	if (p == 0 ||
120		(chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
121		RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
122	) {
123		need_resched();
124	}
125}
126
127#define ROUNDROBIN_INTERVAL (hz / quantum)
128int roundrobin_interval(void)
129{
130	return ROUNDROBIN_INTERVAL;
131}
132
133/*
134 * Force switch among equal priority processes every 100ms.
135 */
136/* ARGSUSED */
137static void
138roundrobin(arg)
139	void *arg;
140{
141#ifndef SMP
142 	struct proc *p = curproc; /* XXX */
143#endif
144
145#ifdef SMP
146	need_resched();
147	forward_roundrobin();
148#else
149 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
150 		need_resched();
151#endif
152
153 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
154}
155
156/*
157 * Constants for digital decay and forget:
158 *	90% of (p_estcpu) usage in 5 * loadav time
159 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
160 *          Note that, as ps(1) mentions, this can let percentages
161 *          total over 100% (I've seen 137.9% for 3 processes).
162 *
163 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
164 *
165 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
166 * That is, the system wants to compute a value of decay such
167 * that the following for loop:
168 * 	for (i = 0; i < (5 * loadavg); i++)
169 * 		p_estcpu *= decay;
170 * will compute
171 * 	p_estcpu *= 0.1;
172 * for all values of loadavg:
173 *
174 * Mathematically this loop can be expressed by saying:
175 * 	decay ** (5 * loadavg) ~= .1
176 *
177 * The system computes decay as:
178 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
179 *
180 * We wish to prove that the system's computation of decay
181 * will always fulfill the equation:
182 * 	decay ** (5 * loadavg) ~= .1
183 *
184 * If we compute b as:
185 * 	b = 2 * loadavg
186 * then
187 * 	decay = b / (b + 1)
188 *
189 * We now need to prove two things:
190 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
191 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
192 *
193 * Facts:
194 *         For x close to zero, exp(x) =~ 1 + x, since
195 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
196 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
197 *         For x close to zero, ln(1+x) =~ x, since
198 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
199 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
200 *         ln(.1) =~ -2.30
201 *
202 * Proof of (1):
203 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
204 *	solving for factor,
205 *      ln(factor) =~ (-2.30/5*loadav), or
206 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
207 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
208 *
209 * Proof of (2):
210 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
211 *	solving for power,
212 *      power*ln(b/(b+1)) =~ -2.30, or
213 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
214 *
215 * Actual power values for the implemented algorithm are as follows:
216 *      loadav: 1       2       3       4
217 *      power:  5.68    10.32   14.94   19.55
218 */
219
220/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
221#define	loadfactor(loadav)	(2 * (loadav))
222#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
223
224/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
225static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
226SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
227
228/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
229static int	fscale __unused = FSCALE;
230SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
231
232/*
233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236 *
237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239 *
240 * If you don't want to bother with the faster/more-accurate formula, you
241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242 * (more general) method of calculating the %age of CPU used by a process.
243 */
244#define	CCPU_SHIFT	11
245
246/*
247 * Recompute process priorities, every hz ticks.
248 */
249/* ARGSUSED */
250static void
251schedcpu(arg)
252	void *arg;
253{
254	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
255	register struct proc *p;
256	register int s;
257	register unsigned int newcpu;
258
259	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
260		/*
261		 * Increment time in/out of memory and sleep time
262		 * (if sleeping).  We ignore overflow; with 16-bit int's
263		 * (remember them?) overflow takes 45 days.
264		 */
265		p->p_swtime++;
266		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
267			p->p_slptime++;
268		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
269		/*
270		 * If the process has slept the entire second,
271		 * stop recalculating its priority until it wakes up.
272		 */
273		if (p->p_slptime > 1)
274			continue;
275		s = splhigh();	/* prevent state changes and protect run queue */
276		/*
277		 * p_pctcpu is only for ps.
278		 */
279#if	(FSHIFT >= CCPU_SHIFT)
280		p->p_pctcpu += (stathz == 100)?
281			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
282                	100 * (((fixpt_t) p->p_cpticks)
283				<< (FSHIFT - CCPU_SHIFT)) / stathz;
284#else
285		p->p_pctcpu += ((FSCALE - ccpu) *
286			(p->p_cpticks * FSCALE / stathz)) >> FSHIFT;
287#endif
288		p->p_cpticks = 0;
289		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
290		p->p_estcpu = min(newcpu, UCHAR_MAX);
291		resetpriority(p);
292		if (p->p_priority >= PUSER) {
293#define	PPQ	(128 / NQS)		/* priorities per queue */
294			if ((p != curproc) &&
295#ifdef SMP
296			    p->p_oncpu == 0xff && 	/* idle */
297#endif
298			    p->p_stat == SRUN &&
299			    (p->p_flag & P_INMEM) &&
300			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
301				remrq(p);
302				p->p_priority = p->p_usrpri;
303				setrunqueue(p);
304			} else
305				p->p_priority = p->p_usrpri;
306		}
307		splx(s);
308	}
309	vmmeter();
310	wakeup((caddr_t)&lbolt);
311	timeout(schedcpu, (void *)0, hz);
312}
313
314/*
315 * Recalculate the priority of a process after it has slept for a while.
316 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
317 * least six times the loadfactor will decay p_estcpu to zero.
318 */
319static void
320updatepri(p)
321	register struct proc *p;
322{
323	register unsigned int newcpu = p->p_estcpu;
324	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
325
326	if (p->p_slptime > 5 * loadfac)
327		p->p_estcpu = 0;
328	else {
329		p->p_slptime--;	/* the first time was done in schedcpu */
330		while (newcpu && --p->p_slptime)
331			newcpu = (int) decay_cpu(loadfac, newcpu);
332		p->p_estcpu = min(newcpu, UCHAR_MAX);
333	}
334	resetpriority(p);
335}
336
337/*
338 * We're only looking at 7 bits of the address; everything is
339 * aligned to 4, lots of things are aligned to greater powers
340 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
341 */
342#define TABLESIZE	128
343static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
344#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
345
346/*
347 * During autoconfiguration or after a panic, a sleep will simply
348 * lower the priority briefly to allow interrupts, then return.
349 * The priority to be used (safepri) is machine-dependent, thus this
350 * value is initialized and maintained in the machine-dependent layers.
351 * This priority will typically be 0, or the lowest priority
352 * that is safe for use on the interrupt stack; it can be made
353 * higher to block network software interrupts after panics.
354 */
355int safepri;
356
357void
358sleepinit()
359{
360	int i;
361
362	for (i = 0; i < TABLESIZE; i++)
363		TAILQ_INIT(&slpque[i]);
364}
365
366/*
367 * General sleep call.  Suspends the current process until a wakeup is
368 * performed on the specified identifier.  The process will then be made
369 * runnable with the specified priority.  Sleeps at most timo/hz seconds
370 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
371 * before and after sleeping, else signals are not checked.  Returns 0 if
372 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
373 * signal needs to be delivered, ERESTART is returned if the current system
374 * call should be restarted if possible, and EINTR is returned if the system
375 * call should be interrupted by the signal (return EINTR).
376 */
377int
378tsleep(ident, priority, wmesg, timo)
379	void *ident;
380	int priority, timo;
381	const char *wmesg;
382{
383	struct proc *p = curproc;
384	int s, sig, catch = priority & PCATCH;
385	struct callout_handle thandle;
386
387#ifdef KTRACE
388	if (KTRPOINT(p, KTR_CSW))
389		ktrcsw(p->p_tracep, 1, 0);
390#endif
391	s = splhigh();
392	if (cold || panicstr) {
393		/*
394		 * After a panic, or during autoconfiguration,
395		 * just give interrupts a chance, then just return;
396		 * don't run any other procs or panic below,
397		 * in case this is the idle process and already asleep.
398		 */
399		splx(safepri);
400		splx(s);
401		return (0);
402	}
403#ifdef DIAGNOSTIC
404	if(p == NULL)
405		panic("tsleep1");
406	if (ident == NULL || p->p_stat != SRUN)
407		panic("tsleep");
408	/* XXX This is not exhaustive, just the most common case */
409	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
410		panic("sleeping process already on another queue");
411#endif
412	p->p_wchan = ident;
413	p->p_wmesg = wmesg;
414	p->p_slptime = 0;
415	p->p_priority = priority & PRIMASK;
416	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
417	if (timo)
418		thandle = timeout(endtsleep, (void *)p, timo);
419	/*
420	 * We put ourselves on the sleep queue and start our timeout
421	 * before calling CURSIG, as we could stop there, and a wakeup
422	 * or a SIGCONT (or both) could occur while we were stopped.
423	 * A SIGCONT would cause us to be marked as SSLEEP
424	 * without resuming us, thus we must be ready for sleep
425	 * when CURSIG is called.  If the wakeup happens while we're
426	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
427	 */
428	if (catch) {
429		p->p_flag |= P_SINTR;
430		if ((sig = CURSIG(p))) {
431			if (p->p_wchan)
432				unsleep(p);
433			p->p_stat = SRUN;
434			goto resume;
435		}
436		if (p->p_wchan == 0) {
437			catch = 0;
438			goto resume;
439		}
440	} else
441		sig = 0;
442	p->p_stat = SSLEEP;
443	p->p_stats->p_ru.ru_nvcsw++;
444	mi_switch();
445resume:
446	curpriority = p->p_usrpri;
447	splx(s);
448	p->p_flag &= ~P_SINTR;
449	if (p->p_flag & P_TIMEOUT) {
450		p->p_flag &= ~P_TIMEOUT;
451		if (sig == 0) {
452#ifdef KTRACE
453			if (KTRPOINT(p, KTR_CSW))
454				ktrcsw(p->p_tracep, 0, 0);
455#endif
456			return (EWOULDBLOCK);
457		}
458	} else if (timo)
459		untimeout(endtsleep, (void *)p, thandle);
460	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
461#ifdef KTRACE
462		if (KTRPOINT(p, KTR_CSW))
463			ktrcsw(p->p_tracep, 0, 0);
464#endif
465		if (p->p_sigacts->ps_sigintr & sigmask(sig))
466			return (EINTR);
467		return (ERESTART);
468	}
469#ifdef KTRACE
470	if (KTRPOINT(p, KTR_CSW))
471		ktrcsw(p->p_tracep, 0, 0);
472#endif
473	return (0);
474}
475
476/*
477 * Implement timeout for tsleep.
478 * If process hasn't been awakened (wchan non-zero),
479 * set timeout flag and undo the sleep.  If proc
480 * is stopped, just unsleep so it will remain stopped.
481 */
482static void
483endtsleep(arg)
484	void *arg;
485{
486	register struct proc *p;
487	int s;
488
489	p = (struct proc *)arg;
490	s = splhigh();
491	if (p->p_wchan) {
492		if (p->p_stat == SSLEEP)
493			setrunnable(p);
494		else
495			unsleep(p);
496		p->p_flag |= P_TIMEOUT;
497	}
498	splx(s);
499}
500
501/*
502 * Remove a process from its wait queue
503 */
504void
505unsleep(p)
506	register struct proc *p;
507{
508	int s;
509
510	s = splhigh();
511	if (p->p_wchan) {
512		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
513		p->p_wchan = 0;
514	}
515	splx(s);
516}
517
518/*
519 * Make all processes sleeping on the specified identifier runnable.
520 */
521void
522wakeup(ident)
523	register void *ident;
524{
525	register struct slpquehead *qp;
526	register struct proc *p;
527	int s;
528
529	s = splhigh();
530	qp = &slpque[LOOKUP(ident)];
531restart:
532	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
533#ifdef DIAGNOSTIC
534		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
535			panic("wakeup");
536#endif
537		if (p->p_wchan == ident) {
538			TAILQ_REMOVE(qp, p, p_procq);
539			p->p_wchan = 0;
540			if (p->p_stat == SSLEEP) {
541				/* OPTIMIZED EXPANSION OF setrunnable(p); */
542				if (p->p_slptime > 1)
543					updatepri(p);
544				p->p_slptime = 0;
545				p->p_stat = SRUN;
546				if (p->p_flag & P_INMEM) {
547					setrunqueue(p);
548					maybe_resched(p);
549				} else {
550					p->p_flag |= P_SWAPINREQ;
551					wakeup((caddr_t)&proc0);
552				}
553				/* END INLINE EXPANSION */
554				goto restart;
555			}
556		}
557	}
558	splx(s);
559}
560
561/*
562 * Make a process sleeping on the specified identifier runnable.
563 * May wake more than one process if a target prcoess is currently
564 * swapped out.
565 */
566void
567wakeup_one(ident)
568	register void *ident;
569{
570	register struct slpquehead *qp;
571	register struct proc *p;
572	int s;
573
574	s = splhigh();
575	qp = &slpque[LOOKUP(ident)];
576
577	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
578#ifdef DIAGNOSTIC
579		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
580			panic("wakeup_one");
581#endif
582		if (p->p_wchan == ident) {
583			TAILQ_REMOVE(qp, p, p_procq);
584			p->p_wchan = 0;
585			if (p->p_stat == SSLEEP) {
586				/* OPTIMIZED EXPANSION OF setrunnable(p); */
587				if (p->p_slptime > 1)
588					updatepri(p);
589				p->p_slptime = 0;
590				p->p_stat = SRUN;
591				if (p->p_flag & P_INMEM) {
592					setrunqueue(p);
593					maybe_resched(p);
594					break;
595				} else {
596					p->p_flag |= P_SWAPINREQ;
597					wakeup((caddr_t)&proc0);
598				}
599				/* END INLINE EXPANSION */
600			}
601		}
602	}
603	splx(s);
604}
605
606/*
607 * The machine independent parts of mi_switch().
608 * Must be called at splstatclock() or higher.
609 */
610void
611mi_switch()
612{
613	register struct proc *p = curproc;	/* XXX */
614	register struct rlimit *rlim;
615	int x;
616
617	/*
618	 * XXX this spl is almost unnecessary.  It is partly to allow for
619	 * sloppy callers that don't do it (issignal() via CURSIG() is the
620	 * main offender).  It is partly to work around a bug in the i386
621	 * cpu_switch() (the ipl is not preserved).  We ran for years
622	 * without it.  I think there was only a interrupt latency problem.
623	 * The main caller, tsleep(), does an splx() a couple of instructions
624	 * after calling here.  The buggy caller, issignal(), usually calls
625	 * here at spl0() and sometimes returns at splhigh().  The process
626	 * then runs for a little too long at splhigh().  The ipl gets fixed
627	 * when the process returns to user mode (or earlier).
628	 *
629	 * It would probably be better to always call here at spl0(). Callers
630	 * are prepared to give up control to another process, so they must
631	 * be prepared to be interrupted.  The clock stuff here may not
632	 * actually need splstatclock().
633	 */
634	x = splstatclock();
635
636#ifdef SIMPLELOCK_DEBUG
637	if (p->p_simple_locks)
638		Debugger("sleep: holding simple lock\n");
639#endif
640	/*
641	 * Compute the amount of time during which the current
642	 * process was running, and add that to its total so far.
643	 */
644	microuptime(&switchtime);
645	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
646	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
647
648	/*
649	 * Check if the process exceeds its cpu resource allocation.
650	 * If over max, kill it.
651	 */
652	if (p->p_stat != SZOMB && p->p_runtime > p->p_limit->p_cpulimit) {
653		rlim = &p->p_rlimit[RLIMIT_CPU];
654		if (p->p_runtime / 1000000 >= rlim->rlim_max)
655			killproc(p, "exceeded maximum CPU limit");
656		else {
657			psignal(p, SIGXCPU);
658			if (rlim->rlim_cur < rlim->rlim_max) {
659				/* XXX: we should make a private copy */
660				rlim->rlim_cur += 5;
661			}
662		}
663	}
664
665	/*
666	 * Pick a new current process and record its start time.
667	 */
668	cnt.v_swtch++;
669	cpu_switch(p);
670	if (switchtime.tv_sec)
671		p->p_switchtime = switchtime;
672	else
673		microuptime(&p->p_switchtime);
674	splx(x);
675}
676
677/*
678 * Initialize the (doubly-linked) run queues
679 * to be empty.
680 */
681/* ARGSUSED*/
682static void
683rqinit(dummy)
684	void *dummy;
685{
686	register int i;
687
688	for (i = 0; i < NQS; i++) {
689		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
690		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
691		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
692	}
693}
694
695/*
696 * Change process state to be runnable,
697 * placing it on the run queue if it is in memory,
698 * and awakening the swapper if it isn't in memory.
699 */
700void
701setrunnable(p)
702	register struct proc *p;
703{
704	register int s;
705
706	s = splhigh();
707	switch (p->p_stat) {
708	case 0:
709	case SRUN:
710	case SZOMB:
711	default:
712		panic("setrunnable");
713	case SSTOP:
714	case SSLEEP:
715		unsleep(p);		/* e.g. when sending signals */
716		break;
717
718	case SIDL:
719		break;
720	}
721	p->p_stat = SRUN;
722	if (p->p_flag & P_INMEM)
723		setrunqueue(p);
724	splx(s);
725	if (p->p_slptime > 1)
726		updatepri(p);
727	p->p_slptime = 0;
728	if ((p->p_flag & P_INMEM) == 0) {
729		p->p_flag |= P_SWAPINREQ;
730		wakeup((caddr_t)&proc0);
731	}
732	else
733		maybe_resched(p);
734}
735
736/*
737 * Compute the priority of a process when running in user mode.
738 * Arrange to reschedule if the resulting priority is better
739 * than that of the current process.
740 */
741void
742resetpriority(p)
743	register struct proc *p;
744{
745	register unsigned int newpriority;
746
747	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
748		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
749		newpriority = min(newpriority, MAXPRI);
750		p->p_usrpri = newpriority;
751	}
752	maybe_resched(p);
753}
754
755/* ARGSUSED */
756static void sched_setup __P((void *dummy));
757static void
758sched_setup(dummy)
759	void *dummy;
760{
761	/* Kick off timeout driven events by calling first time. */
762	roundrobin(NULL);
763	schedcpu(NULL);
764}
765SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
766
767