kern_synch.c revision 40648
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.62 1998/08/26 05:27:42 dillon Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64
65static void rqinit __P((void *));
66SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67
68u_char	curpriority;		/* usrpri of curproc */
69int	lbolt;			/* once a second sleep address */
70
71static void	endtsleep __P((void *));
72static void	roundrobin __P((void *arg));
73static void	schedcpu __P((void *arg));
74static void	updatepri __P((struct proc *p));
75
76#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
77#ifndef DEFAULT_SCHEDULE_QUANTUM
78#define DEFAULT_SCHEDULE_QUANTUM 10
79#endif
80static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
81
82static int
83sysctl_kern_quantum SYSCTL_HANDLER_ARGS
84{
85	int error;
86	int new_val = quantum;
87
88	new_val = quantum;
89	error = sysctl_handle_int(oidp, &new_val, 0, req);
90	if (error == 0) {
91		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
92			quantum = new_val;
93		} else {
94			error = EINVAL;
95		}
96	}
97	return (error);
98}
99
100SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
101	0, sizeof quantum, sysctl_kern_quantum, "I", "");
102
103/* maybe_resched: Decide if you need to reschedule or not
104 * taking the priorities and schedulers into account.
105 */
106static void maybe_resched(struct proc *chk)
107{
108	struct proc *p = curproc; /* XXX */
109
110	/*
111	 * Compare priorities if the new process is on the same scheduler,
112	 * otherwise the one on the more realtimeish scheduler wins.
113	 *
114	 * XXX idle scheduler still broken because proccess stays on idle
115	 * scheduler during waits (such as when getting FS locks).  If a
116	 * standard process becomes runaway cpu-bound, the system can lockup
117	 * due to idle-scheduler processes in wakeup never getting any cpu.
118	 */
119	if (p == 0 ||
120		(chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
121		RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
122	) {
123		need_resched();
124	}
125}
126
127#define ROUNDROBIN_INTERVAL (hz / quantum)
128int roundrobin_interval(void)
129{
130	return ROUNDROBIN_INTERVAL;
131}
132
133/*
134 * Force switch among equal priority processes every 100ms.
135 */
136/* ARGSUSED */
137static void
138roundrobin(arg)
139	void *arg;
140{
141
142#ifdef SMP
143	need_resched();
144	forward_roundrobin();
145#else
146 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
147 		need_resched();
148#endif
149
150 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
151}
152
153/*
154 * Constants for digital decay and forget:
155 *	90% of (p_estcpu) usage in 5 * loadav time
156 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
157 *          Note that, as ps(1) mentions, this can let percentages
158 *          total over 100% (I've seen 137.9% for 3 processes).
159 *
160 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
161 *
162 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
163 * That is, the system wants to compute a value of decay such
164 * that the following for loop:
165 * 	for (i = 0; i < (5 * loadavg); i++)
166 * 		p_estcpu *= decay;
167 * will compute
168 * 	p_estcpu *= 0.1;
169 * for all values of loadavg:
170 *
171 * Mathematically this loop can be expressed by saying:
172 * 	decay ** (5 * loadavg) ~= .1
173 *
174 * The system computes decay as:
175 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
176 *
177 * We wish to prove that the system's computation of decay
178 * will always fulfill the equation:
179 * 	decay ** (5 * loadavg) ~= .1
180 *
181 * If we compute b as:
182 * 	b = 2 * loadavg
183 * then
184 * 	decay = b / (b + 1)
185 *
186 * We now need to prove two things:
187 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
188 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
189 *
190 * Facts:
191 *         For x close to zero, exp(x) =~ 1 + x, since
192 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
193 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
194 *         For x close to zero, ln(1+x) =~ x, since
195 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
196 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
197 *         ln(.1) =~ -2.30
198 *
199 * Proof of (1):
200 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
201 *	solving for factor,
202 *      ln(factor) =~ (-2.30/5*loadav), or
203 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
204 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
205 *
206 * Proof of (2):
207 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
208 *	solving for power,
209 *      power*ln(b/(b+1)) =~ -2.30, or
210 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
211 *
212 * Actual power values for the implemented algorithm are as follows:
213 *      loadav: 1       2       3       4
214 *      power:  5.68    10.32   14.94   19.55
215 */
216
217/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
218#define	loadfactor(loadav)	(2 * (loadav))
219#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
220
221/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
222static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
223SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
224
225/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
226static int	fscale __unused = FSCALE;
227SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
228
229/*
230 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
231 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
232 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
233 *
234 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
235 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
236 *
237 * If you don't want to bother with the faster/more-accurate formula, you
238 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
239 * (more general) method of calculating the %age of CPU used by a process.
240 */
241#define	CCPU_SHIFT	11
242
243/*
244 * Recompute process priorities, every hz ticks.
245 */
246/* ARGSUSED */
247static void
248schedcpu(arg)
249	void *arg;
250{
251	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
252	register struct proc *p;
253	register int s;
254	register unsigned int newcpu;
255
256	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
257		/*
258		 * Increment time in/out of memory and sleep time
259		 * (if sleeping).  We ignore overflow; with 16-bit int's
260		 * (remember them?) overflow takes 45 days.
261		 */
262		p->p_swtime++;
263		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
264			p->p_slptime++;
265		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
266		/*
267		 * If the process has slept the entire second,
268		 * stop recalculating its priority until it wakes up.
269		 */
270		if (p->p_slptime > 1)
271			continue;
272		s = splhigh();	/* prevent state changes and protect run queue */
273		/*
274		 * p_pctcpu is only for ps.
275		 */
276#if	(FSHIFT >= CCPU_SHIFT)
277		p->p_pctcpu += (hz == 100)?
278			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
279                	100 * (((fixpt_t) p->p_cpticks)
280				<< (FSHIFT - CCPU_SHIFT)) / hz;
281#else
282		p->p_pctcpu += ((FSCALE - ccpu) *
283			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
284#endif
285		p->p_cpticks = 0;
286		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
287		p->p_estcpu = min(newcpu, UCHAR_MAX);
288		resetpriority(p);
289		if (p->p_priority >= PUSER) {
290#define	PPQ	(128 / NQS)		/* priorities per queue */
291			if ((p != curproc) &&
292#ifdef SMP
293			    (u_char)p->p_oncpu == 0xff && 	/* idle */
294#endif
295			    p->p_stat == SRUN &&
296			    (p->p_flag & P_INMEM) &&
297			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
298				remrq(p);
299				p->p_priority = p->p_usrpri;
300				setrunqueue(p);
301			} else
302				p->p_priority = p->p_usrpri;
303		}
304		splx(s);
305	}
306	vmmeter();
307	wakeup((caddr_t)&lbolt);
308	timeout(schedcpu, (void *)0, hz);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316static void
317updatepri(p)
318	register struct proc *p;
319{
320	register unsigned int newcpu = p->p_estcpu;
321	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323	if (p->p_slptime > 5 * loadfac)
324		p->p_estcpu = 0;
325	else {
326		p->p_slptime--;	/* the first time was done in schedcpu */
327		while (newcpu && --p->p_slptime)
328			newcpu = (int) decay_cpu(loadfac, newcpu);
329		p->p_estcpu = min(newcpu, UCHAR_MAX);
330	}
331	resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE	128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343/*
344 * During autoconfiguration or after a panic, a sleep will simply
345 * lower the priority briefly to allow interrupts, then return.
346 * The priority to be used (safepri) is machine-dependent, thus this
347 * value is initialized and maintained in the machine-dependent layers.
348 * This priority will typically be 0, or the lowest priority
349 * that is safe for use on the interrupt stack; it can be made
350 * higher to block network software interrupts after panics.
351 */
352int safepri;
353
354void
355sleepinit()
356{
357	int i;
358
359	for (i = 0; i < TABLESIZE; i++)
360		TAILQ_INIT(&slpque[i]);
361}
362
363/*
364 * General sleep call.  Suspends the current process until a wakeup is
365 * performed on the specified identifier.  The process will then be made
366 * runnable with the specified priority.  Sleeps at most timo/hz seconds
367 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
368 * before and after sleeping, else signals are not checked.  Returns 0 if
369 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
370 * signal needs to be delivered, ERESTART is returned if the current system
371 * call should be restarted if possible, and EINTR is returned if the system
372 * call should be interrupted by the signal (return EINTR).
373 */
374int
375tsleep(ident, priority, wmesg, timo)
376	void *ident;
377	int priority, timo;
378	const char *wmesg;
379{
380	struct proc *p = curproc;
381	int s, sig, catch = priority & PCATCH;
382	struct callout_handle thandle;
383
384#ifdef KTRACE
385	if (KTRPOINT(p, KTR_CSW))
386		ktrcsw(p->p_tracep, 1, 0);
387#endif
388	s = splhigh();
389	if (cold || panicstr) {
390		/*
391		 * After a panic, or during autoconfiguration,
392		 * just give interrupts a chance, then just return;
393		 * don't run any other procs or panic below,
394		 * in case this is the idle process and already asleep.
395		 */
396		splx(safepri);
397		splx(s);
398		return (0);
399	}
400#ifdef DIAGNOSTIC
401	if(p == NULL)
402		panic("tsleep1");
403	if (ident == NULL || p->p_stat != SRUN)
404		panic("tsleep");
405	/* XXX This is not exhaustive, just the most common case */
406	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
407		panic("sleeping process already on another queue");
408#endif
409	p->p_wchan = ident;
410	p->p_wmesg = wmesg;
411	p->p_slptime = 0;
412	p->p_priority = priority & PRIMASK;
413	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
414	if (timo)
415		thandle = timeout(endtsleep, (void *)p, timo);
416	/*
417	 * We put ourselves on the sleep queue and start our timeout
418	 * before calling CURSIG, as we could stop there, and a wakeup
419	 * or a SIGCONT (or both) could occur while we were stopped.
420	 * A SIGCONT would cause us to be marked as SSLEEP
421	 * without resuming us, thus we must be ready for sleep
422	 * when CURSIG is called.  If the wakeup happens while we're
423	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
424	 */
425	if (catch) {
426		p->p_flag |= P_SINTR;
427		if ((sig = CURSIG(p))) {
428			if (p->p_wchan)
429				unsleep(p);
430			p->p_stat = SRUN;
431			goto resume;
432		}
433		if (p->p_wchan == 0) {
434			catch = 0;
435			goto resume;
436		}
437	} else
438		sig = 0;
439	p->p_stat = SSLEEP;
440	p->p_stats->p_ru.ru_nvcsw++;
441	mi_switch();
442resume:
443	curpriority = p->p_usrpri;
444	splx(s);
445	p->p_flag &= ~P_SINTR;
446	if (p->p_flag & P_TIMEOUT) {
447		p->p_flag &= ~P_TIMEOUT;
448		if (sig == 0) {
449#ifdef KTRACE
450			if (KTRPOINT(p, KTR_CSW))
451				ktrcsw(p->p_tracep, 0, 0);
452#endif
453			return (EWOULDBLOCK);
454		}
455	} else if (timo)
456		untimeout(endtsleep, (void *)p, thandle);
457	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
458#ifdef KTRACE
459		if (KTRPOINT(p, KTR_CSW))
460			ktrcsw(p->p_tracep, 0, 0);
461#endif
462		if (p->p_sigacts->ps_sigintr & sigmask(sig))
463			return (EINTR);
464		return (ERESTART);
465	}
466#ifdef KTRACE
467	if (KTRPOINT(p, KTR_CSW))
468		ktrcsw(p->p_tracep, 0, 0);
469#endif
470	return (0);
471}
472
473/*
474 * Implement timeout for tsleep.
475 * If process hasn't been awakened (wchan non-zero),
476 * set timeout flag and undo the sleep.  If proc
477 * is stopped, just unsleep so it will remain stopped.
478 */
479static void
480endtsleep(arg)
481	void *arg;
482{
483	register struct proc *p;
484	int s;
485
486	p = (struct proc *)arg;
487	s = splhigh();
488	if (p->p_wchan) {
489		if (p->p_stat == SSLEEP)
490			setrunnable(p);
491		else
492			unsleep(p);
493		p->p_flag |= P_TIMEOUT;
494	}
495	splx(s);
496}
497
498/*
499 * Remove a process from its wait queue
500 */
501void
502unsleep(p)
503	register struct proc *p;
504{
505	int s;
506
507	s = splhigh();
508	if (p->p_wchan) {
509		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
510		p->p_wchan = 0;
511	}
512	splx(s);
513}
514
515/*
516 * Make all processes sleeping on the specified identifier runnable.
517 */
518void
519wakeup(ident)
520	register void *ident;
521{
522	register struct slpquehead *qp;
523	register struct proc *p;
524	int s;
525
526	s = splhigh();
527	qp = &slpque[LOOKUP(ident)];
528restart:
529	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
530#ifdef DIAGNOSTIC
531		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
532			panic("wakeup");
533#endif
534		if (p->p_wchan == ident) {
535			TAILQ_REMOVE(qp, p, p_procq);
536			p->p_wchan = 0;
537			if (p->p_stat == SSLEEP) {
538				/* OPTIMIZED EXPANSION OF setrunnable(p); */
539				if (p->p_slptime > 1)
540					updatepri(p);
541				p->p_slptime = 0;
542				p->p_stat = SRUN;
543				if (p->p_flag & P_INMEM) {
544					setrunqueue(p);
545					maybe_resched(p);
546				} else {
547					p->p_flag |= P_SWAPINREQ;
548					wakeup((caddr_t)&proc0);
549				}
550				/* END INLINE EXPANSION */
551				goto restart;
552			}
553		}
554	}
555	splx(s);
556}
557
558/*
559 * Make a process sleeping on the specified identifier runnable.
560 * May wake more than one process if a target prcoess is currently
561 * swapped out.
562 */
563void
564wakeup_one(ident)
565	register void *ident;
566{
567	register struct slpquehead *qp;
568	register struct proc *p;
569	int s;
570
571	s = splhigh();
572	qp = &slpque[LOOKUP(ident)];
573
574	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
575#ifdef DIAGNOSTIC
576		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
577			panic("wakeup_one");
578#endif
579		if (p->p_wchan == ident) {
580			TAILQ_REMOVE(qp, p, p_procq);
581			p->p_wchan = 0;
582			if (p->p_stat == SSLEEP) {
583				/* OPTIMIZED EXPANSION OF setrunnable(p); */
584				if (p->p_slptime > 1)
585					updatepri(p);
586				p->p_slptime = 0;
587				p->p_stat = SRUN;
588				if (p->p_flag & P_INMEM) {
589					setrunqueue(p);
590					maybe_resched(p);
591					break;
592				} else {
593					p->p_flag |= P_SWAPINREQ;
594					wakeup((caddr_t)&proc0);
595				}
596				/* END INLINE EXPANSION */
597			}
598		}
599	}
600	splx(s);
601}
602
603/*
604 * The machine independent parts of mi_switch().
605 * Must be called at splstatclock() or higher.
606 */
607void
608mi_switch()
609{
610	register struct proc *p = curproc;	/* XXX */
611	register struct rlimit *rlim;
612	int x;
613
614	/*
615	 * XXX this spl is almost unnecessary.  It is partly to allow for
616	 * sloppy callers that don't do it (issignal() via CURSIG() is the
617	 * main offender).  It is partly to work around a bug in the i386
618	 * cpu_switch() (the ipl is not preserved).  We ran for years
619	 * without it.  I think there was only a interrupt latency problem.
620	 * The main caller, tsleep(), does an splx() a couple of instructions
621	 * after calling here.  The buggy caller, issignal(), usually calls
622	 * here at spl0() and sometimes returns at splhigh().  The process
623	 * then runs for a little too long at splhigh().  The ipl gets fixed
624	 * when the process returns to user mode (or earlier).
625	 *
626	 * It would probably be better to always call here at spl0(). Callers
627	 * are prepared to give up control to another process, so they must
628	 * be prepared to be interrupted.  The clock stuff here may not
629	 * actually need splstatclock().
630	 */
631	x = splstatclock();
632
633#ifdef SIMPLELOCK_DEBUG
634	if (p->p_simple_locks)
635		printf("sleep: holding simple lock\n");
636#endif
637	/*
638	 * Compute the amount of time during which the current
639	 * process was running, and add that to its total so far.
640	 */
641	microuptime(&switchtime);
642	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
643	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
644
645	/*
646	 * Check if the process exceeds its cpu resource allocation.
647	 * If over max, kill it.
648	 */
649	if (p->p_stat != SZOMB && p->p_runtime > p->p_limit->p_cpulimit) {
650		rlim = &p->p_rlimit[RLIMIT_CPU];
651		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
652			killproc(p, "exceeded maximum CPU limit");
653		} else {
654			psignal(p, SIGXCPU);
655			if (rlim->rlim_cur < rlim->rlim_max) {
656				/* XXX: we should make a private copy */
657				rlim->rlim_cur += 5;
658			}
659		}
660	}
661
662	/*
663	 * Pick a new current process and record its start time.
664	 */
665	cnt.v_swtch++;
666	cpu_switch(p);
667	if (switchtime.tv_sec)
668		p->p_switchtime = switchtime;
669	else
670		microuptime(&p->p_switchtime);
671	splx(x);
672}
673
674/*
675 * Initialize the (doubly-linked) run queues
676 * to be empty.
677 */
678/* ARGSUSED*/
679static void
680rqinit(dummy)
681	void *dummy;
682{
683	register int i;
684
685	for (i = 0; i < NQS; i++) {
686		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
687		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
688		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
689	}
690}
691
692/*
693 * Change process state to be runnable,
694 * placing it on the run queue if it is in memory,
695 * and awakening the swapper if it isn't in memory.
696 */
697void
698setrunnable(p)
699	register struct proc *p;
700{
701	register int s;
702
703	s = splhigh();
704	switch (p->p_stat) {
705	case 0:
706	case SRUN:
707	case SZOMB:
708	default:
709		panic("setrunnable");
710	case SSTOP:
711	case SSLEEP:
712		unsleep(p);		/* e.g. when sending signals */
713		break;
714
715	case SIDL:
716		break;
717	}
718	p->p_stat = SRUN;
719	if (p->p_flag & P_INMEM)
720		setrunqueue(p);
721	splx(s);
722	if (p->p_slptime > 1)
723		updatepri(p);
724	p->p_slptime = 0;
725	if ((p->p_flag & P_INMEM) == 0) {
726		p->p_flag |= P_SWAPINREQ;
727		wakeup((caddr_t)&proc0);
728	}
729	else
730		maybe_resched(p);
731}
732
733/*
734 * Compute the priority of a process when running in user mode.
735 * Arrange to reschedule if the resulting priority is better
736 * than that of the current process.
737 */
738void
739resetpriority(p)
740	register struct proc *p;
741{
742	register unsigned int newpriority;
743
744	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
745		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
746		newpriority = min(newpriority, MAXPRI);
747		p->p_usrpri = newpriority;
748	}
749	maybe_resched(p);
750}
751
752/* ARGSUSED */
753static void sched_setup __P((void *dummy));
754static void
755sched_setup(dummy)
756	void *dummy;
757{
758	/* Kick off timeout driven events by calling first time. */
759	roundrobin(NULL);
760	schedcpu(NULL);
761}
762SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
763
764