kern_synch.c revision 38551
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.61 1998/07/15 02:32:10 bde Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64
65static void rqinit __P((void *));
66SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67
68u_char	curpriority;		/* usrpri of curproc */
69int	lbolt;			/* once a second sleep address */
70
71static void	endtsleep __P((void *));
72static void	roundrobin __P((void *arg));
73static void	schedcpu __P((void *arg));
74static void	updatepri __P((struct proc *p));
75
76#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
77#ifndef DEFAULT_SCHEDULE_QUANTUM
78#define DEFAULT_SCHEDULE_QUANTUM 10
79#endif
80static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
81
82static int
83sysctl_kern_quantum SYSCTL_HANDLER_ARGS
84{
85	int error;
86	int new_val = quantum;
87
88	new_val = quantum;
89	error = sysctl_handle_int(oidp, &new_val, 0, req);
90	if (error == 0) {
91		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
92			quantum = new_val;
93		} else {
94			error = EINVAL;
95		}
96	}
97	return (error);
98}
99
100SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
101	0, sizeof quantum, sysctl_kern_quantum, "I", "");
102
103/* maybe_resched: Decide if you need to reschedule or not
104 * taking the priorities and schedulers into account.
105 */
106static void maybe_resched(struct proc *chk)
107{
108	struct proc *p = curproc; /* XXX */
109
110	/*
111	 * Compare priorities if the new process is on the same scheduler,
112	 * otherwise the one on the more realtimeish scheduler wins.
113	 *
114	 * XXX idle scheduler still broken because proccess stays on idle
115	 * scheduler during waits (such as when getting FS locks).  If a
116	 * standard process becomes runaway cpu-bound, the system can lockup
117	 * due to idle-scheduler processes in wakeup never getting any cpu.
118	 */
119	if (p == 0 ||
120		(chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
121		RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
122	) {
123		need_resched();
124	}
125}
126
127#define ROUNDROBIN_INTERVAL (hz / quantum)
128int roundrobin_interval(void)
129{
130	return ROUNDROBIN_INTERVAL;
131}
132
133/*
134 * Force switch among equal priority processes every 100ms.
135 */
136/* ARGSUSED */
137static void
138roundrobin(arg)
139	void *arg;
140{
141 	struct proc *p = curproc; /* XXX */
142
143#ifdef SMP
144	need_resched();
145	forward_roundrobin();
146#else
147 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
148 		need_resched();
149#endif
150
151 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
152}
153
154/*
155 * Constants for digital decay and forget:
156 *	90% of (p_estcpu) usage in 5 * loadav time
157 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
158 *          Note that, as ps(1) mentions, this can let percentages
159 *          total over 100% (I've seen 137.9% for 3 processes).
160 *
161 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
162 *
163 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
164 * That is, the system wants to compute a value of decay such
165 * that the following for loop:
166 * 	for (i = 0; i < (5 * loadavg); i++)
167 * 		p_estcpu *= decay;
168 * will compute
169 * 	p_estcpu *= 0.1;
170 * for all values of loadavg:
171 *
172 * Mathematically this loop can be expressed by saying:
173 * 	decay ** (5 * loadavg) ~= .1
174 *
175 * The system computes decay as:
176 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
177 *
178 * We wish to prove that the system's computation of decay
179 * will always fulfill the equation:
180 * 	decay ** (5 * loadavg) ~= .1
181 *
182 * If we compute b as:
183 * 	b = 2 * loadavg
184 * then
185 * 	decay = b / (b + 1)
186 *
187 * We now need to prove two things:
188 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
189 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
190 *
191 * Facts:
192 *         For x close to zero, exp(x) =~ 1 + x, since
193 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
194 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
195 *         For x close to zero, ln(1+x) =~ x, since
196 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
197 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
198 *         ln(.1) =~ -2.30
199 *
200 * Proof of (1):
201 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
202 *	solving for factor,
203 *      ln(factor) =~ (-2.30/5*loadav), or
204 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
205 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
206 *
207 * Proof of (2):
208 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
209 *	solving for power,
210 *      power*ln(b/(b+1)) =~ -2.30, or
211 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
212 *
213 * Actual power values for the implemented algorithm are as follows:
214 *      loadav: 1       2       3       4
215 *      power:  5.68    10.32   14.94   19.55
216 */
217
218/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
219#define	loadfactor(loadav)	(2 * (loadav))
220#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
221
222/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
223static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
224SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
225
226/* kernel uses `FSCALE', user uses `fscale' */
227static int	fscale = FSCALE;
228SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
229
230/*
231 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
232 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
233 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
234 *
235 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
236 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
237 *
238 * If you don't want to bother with the faster/more-accurate formula, you
239 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
240 * (more general) method of calculating the %age of CPU used by a process.
241 */
242#define	CCPU_SHIFT	11
243
244/*
245 * Recompute process priorities, every hz ticks.
246 */
247/* ARGSUSED */
248static void
249schedcpu(arg)
250	void *arg;
251{
252	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
253	register struct proc *p;
254	register int s;
255	register unsigned int newcpu;
256
257	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
258		/*
259		 * Increment time in/out of memory and sleep time
260		 * (if sleeping).  We ignore overflow; with 16-bit int's
261		 * (remember them?) overflow takes 45 days.
262		 */
263		p->p_swtime++;
264		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
265			p->p_slptime++;
266		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
267		/*
268		 * If the process has slept the entire second,
269		 * stop recalculating its priority until it wakes up.
270		 */
271		if (p->p_slptime > 1)
272			continue;
273		s = splhigh();	/* prevent state changes and protect run queue */
274		/*
275		 * p_pctcpu is only for ps.
276		 */
277#if	(FSHIFT >= CCPU_SHIFT)
278		p->p_pctcpu += (hz == 100)?
279			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
280                	100 * (((fixpt_t) p->p_cpticks)
281				<< (FSHIFT - CCPU_SHIFT)) / hz;
282#else
283		p->p_pctcpu += ((FSCALE - ccpu) *
284			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
285#endif
286		p->p_cpticks = 0;
287		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
288		p->p_estcpu = min(newcpu, UCHAR_MAX);
289		resetpriority(p);
290		if (p->p_priority >= PUSER) {
291#define	PPQ	(128 / NQS)		/* priorities per queue */
292			if ((p != curproc) &&
293#ifdef SMP
294			    (u_char)p->p_oncpu == 0xff && 	/* idle */
295#endif
296			    p->p_stat == SRUN &&
297			    (p->p_flag & P_INMEM) &&
298			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
299				remrq(p);
300				p->p_priority = p->p_usrpri;
301				setrunqueue(p);
302			} else
303				p->p_priority = p->p_usrpri;
304		}
305		splx(s);
306	}
307	vmmeter();
308	wakeup((caddr_t)&lbolt);
309	timeout(schedcpu, (void *)0, hz);
310}
311
312/*
313 * Recalculate the priority of a process after it has slept for a while.
314 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
315 * least six times the loadfactor will decay p_estcpu to zero.
316 */
317static void
318updatepri(p)
319	register struct proc *p;
320{
321	register unsigned int newcpu = p->p_estcpu;
322	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
323
324	if (p->p_slptime > 5 * loadfac)
325		p->p_estcpu = 0;
326	else {
327		p->p_slptime--;	/* the first time was done in schedcpu */
328		while (newcpu && --p->p_slptime)
329			newcpu = (int) decay_cpu(loadfac, newcpu);
330		p->p_estcpu = min(newcpu, UCHAR_MAX);
331	}
332	resetpriority(p);
333}
334
335/*
336 * We're only looking at 7 bits of the address; everything is
337 * aligned to 4, lots of things are aligned to greater powers
338 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
339 */
340#define TABLESIZE	128
341static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
342#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
343
344/*
345 * During autoconfiguration or after a panic, a sleep will simply
346 * lower the priority briefly to allow interrupts, then return.
347 * The priority to be used (safepri) is machine-dependent, thus this
348 * value is initialized and maintained in the machine-dependent layers.
349 * This priority will typically be 0, or the lowest priority
350 * that is safe for use on the interrupt stack; it can be made
351 * higher to block network software interrupts after panics.
352 */
353int safepri;
354
355void
356sleepinit()
357{
358	int i;
359
360	for (i = 0; i < TABLESIZE; i++)
361		TAILQ_INIT(&slpque[i]);
362}
363
364/*
365 * General sleep call.  Suspends the current process until a wakeup is
366 * performed on the specified identifier.  The process will then be made
367 * runnable with the specified priority.  Sleeps at most timo/hz seconds
368 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
369 * before and after sleeping, else signals are not checked.  Returns 0 if
370 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
371 * signal needs to be delivered, ERESTART is returned if the current system
372 * call should be restarted if possible, and EINTR is returned if the system
373 * call should be interrupted by the signal (return EINTR).
374 */
375int
376tsleep(ident, priority, wmesg, timo)
377	void *ident;
378	int priority, timo;
379	const char *wmesg;
380{
381	struct proc *p = curproc;
382	int s, sig, catch = priority & PCATCH;
383	struct callout_handle thandle;
384
385#ifdef KTRACE
386	if (KTRPOINT(p, KTR_CSW))
387		ktrcsw(p->p_tracep, 1, 0);
388#endif
389	s = splhigh();
390	if (cold || panicstr) {
391		/*
392		 * After a panic, or during autoconfiguration,
393		 * just give interrupts a chance, then just return;
394		 * don't run any other procs or panic below,
395		 * in case this is the idle process and already asleep.
396		 */
397		splx(safepri);
398		splx(s);
399		return (0);
400	}
401#ifdef DIAGNOSTIC
402	if(p == NULL)
403		panic("tsleep1");
404	if (ident == NULL || p->p_stat != SRUN)
405		panic("tsleep");
406	/* XXX This is not exhaustive, just the most common case */
407	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
408		panic("sleeping process already on another queue");
409#endif
410	p->p_wchan = ident;
411	p->p_wmesg = wmesg;
412	p->p_slptime = 0;
413	p->p_priority = priority & PRIMASK;
414	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
415	if (timo)
416		thandle = timeout(endtsleep, (void *)p, timo);
417	/*
418	 * We put ourselves on the sleep queue and start our timeout
419	 * before calling CURSIG, as we could stop there, and a wakeup
420	 * or a SIGCONT (or both) could occur while we were stopped.
421	 * A SIGCONT would cause us to be marked as SSLEEP
422	 * without resuming us, thus we must be ready for sleep
423	 * when CURSIG is called.  If the wakeup happens while we're
424	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
425	 */
426	if (catch) {
427		p->p_flag |= P_SINTR;
428		if ((sig = CURSIG(p))) {
429			if (p->p_wchan)
430				unsleep(p);
431			p->p_stat = SRUN;
432			goto resume;
433		}
434		if (p->p_wchan == 0) {
435			catch = 0;
436			goto resume;
437		}
438	} else
439		sig = 0;
440	p->p_stat = SSLEEP;
441	p->p_stats->p_ru.ru_nvcsw++;
442	mi_switch();
443resume:
444	curpriority = p->p_usrpri;
445	splx(s);
446	p->p_flag &= ~P_SINTR;
447	if (p->p_flag & P_TIMEOUT) {
448		p->p_flag &= ~P_TIMEOUT;
449		if (sig == 0) {
450#ifdef KTRACE
451			if (KTRPOINT(p, KTR_CSW))
452				ktrcsw(p->p_tracep, 0, 0);
453#endif
454			return (EWOULDBLOCK);
455		}
456	} else if (timo)
457		untimeout(endtsleep, (void *)p, thandle);
458	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
459#ifdef KTRACE
460		if (KTRPOINT(p, KTR_CSW))
461			ktrcsw(p->p_tracep, 0, 0);
462#endif
463		if (p->p_sigacts->ps_sigintr & sigmask(sig))
464			return (EINTR);
465		return (ERESTART);
466	}
467#ifdef KTRACE
468	if (KTRPOINT(p, KTR_CSW))
469		ktrcsw(p->p_tracep, 0, 0);
470#endif
471	return (0);
472}
473
474/*
475 * Implement timeout for tsleep.
476 * If process hasn't been awakened (wchan non-zero),
477 * set timeout flag and undo the sleep.  If proc
478 * is stopped, just unsleep so it will remain stopped.
479 */
480static void
481endtsleep(arg)
482	void *arg;
483{
484	register struct proc *p;
485	int s;
486
487	p = (struct proc *)arg;
488	s = splhigh();
489	if (p->p_wchan) {
490		if (p->p_stat == SSLEEP)
491			setrunnable(p);
492		else
493			unsleep(p);
494		p->p_flag |= P_TIMEOUT;
495	}
496	splx(s);
497}
498
499/*
500 * Remove a process from its wait queue
501 */
502void
503unsleep(p)
504	register struct proc *p;
505{
506	int s;
507
508	s = splhigh();
509	if (p->p_wchan) {
510		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
511		p->p_wchan = 0;
512	}
513	splx(s);
514}
515
516/*
517 * Make all processes sleeping on the specified identifier runnable.
518 */
519void
520wakeup(ident)
521	register void *ident;
522{
523	register struct slpquehead *qp;
524	register struct proc *p;
525	int s;
526
527	s = splhigh();
528	qp = &slpque[LOOKUP(ident)];
529restart:
530	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
531#ifdef DIAGNOSTIC
532		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
533			panic("wakeup");
534#endif
535		if (p->p_wchan == ident) {
536			TAILQ_REMOVE(qp, p, p_procq);
537			p->p_wchan = 0;
538			if (p->p_stat == SSLEEP) {
539				/* OPTIMIZED EXPANSION OF setrunnable(p); */
540				if (p->p_slptime > 1)
541					updatepri(p);
542				p->p_slptime = 0;
543				p->p_stat = SRUN;
544				if (p->p_flag & P_INMEM) {
545					setrunqueue(p);
546					maybe_resched(p);
547				} else {
548					p->p_flag |= P_SWAPINREQ;
549					wakeup((caddr_t)&proc0);
550				}
551				/* END INLINE EXPANSION */
552				goto restart;
553			}
554		}
555	}
556	splx(s);
557}
558
559/*
560 * Make a process sleeping on the specified identifier runnable.
561 * May wake more than one process if a target prcoess is currently
562 * swapped out.
563 */
564void
565wakeup_one(ident)
566	register void *ident;
567{
568	register struct slpquehead *qp;
569	register struct proc *p;
570	int s;
571
572	s = splhigh();
573	qp = &slpque[LOOKUP(ident)];
574
575	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
576#ifdef DIAGNOSTIC
577		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
578			panic("wakeup_one");
579#endif
580		if (p->p_wchan == ident) {
581			TAILQ_REMOVE(qp, p, p_procq);
582			p->p_wchan = 0;
583			if (p->p_stat == SSLEEP) {
584				/* OPTIMIZED EXPANSION OF setrunnable(p); */
585				if (p->p_slptime > 1)
586					updatepri(p);
587				p->p_slptime = 0;
588				p->p_stat = SRUN;
589				if (p->p_flag & P_INMEM) {
590					setrunqueue(p);
591					maybe_resched(p);
592					break;
593				} else {
594					p->p_flag |= P_SWAPINREQ;
595					wakeup((caddr_t)&proc0);
596				}
597				/* END INLINE EXPANSION */
598			}
599		}
600	}
601	splx(s);
602}
603
604/*
605 * The machine independent parts of mi_switch().
606 * Must be called at splstatclock() or higher.
607 */
608void
609mi_switch()
610{
611	register struct proc *p = curproc;	/* XXX */
612	register struct rlimit *rlim;
613	int x;
614
615	/*
616	 * XXX this spl is almost unnecessary.  It is partly to allow for
617	 * sloppy callers that don't do it (issignal() via CURSIG() is the
618	 * main offender).  It is partly to work around a bug in the i386
619	 * cpu_switch() (the ipl is not preserved).  We ran for years
620	 * without it.  I think there was only a interrupt latency problem.
621	 * The main caller, tsleep(), does an splx() a couple of instructions
622	 * after calling here.  The buggy caller, issignal(), usually calls
623	 * here at spl0() and sometimes returns at splhigh().  The process
624	 * then runs for a little too long at splhigh().  The ipl gets fixed
625	 * when the process returns to user mode (or earlier).
626	 *
627	 * It would probably be better to always call here at spl0(). Callers
628	 * are prepared to give up control to another process, so they must
629	 * be prepared to be interrupted.  The clock stuff here may not
630	 * actually need splstatclock().
631	 */
632	x = splstatclock();
633
634#ifdef SIMPLELOCK_DEBUG
635	if (p->p_simple_locks)
636		printf("sleep: holding simple lock\n");
637#endif
638	/*
639	 * Compute the amount of time during which the current
640	 * process was running, and add that to its total so far.
641	 */
642	microuptime(&switchtime);
643	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
644	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
645
646	/*
647	 * Check if the process exceeds its cpu resource allocation.
648	 * If over max, kill it.
649	 */
650	if (p->p_stat != SZOMB && p->p_runtime > p->p_limit->p_cpulimit) {
651		rlim = &p->p_rlimit[RLIMIT_CPU];
652		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
653			killproc(p, "exceeded maximum CPU limit");
654		} else {
655			psignal(p, SIGXCPU);
656			if (rlim->rlim_cur < rlim->rlim_max) {
657				/* XXX: we should make a private copy */
658				rlim->rlim_cur += 5;
659			}
660		}
661	}
662
663	/*
664	 * Pick a new current process and record its start time.
665	 */
666	cnt.v_swtch++;
667	cpu_switch(p);
668	if (switchtime.tv_sec)
669		p->p_switchtime = switchtime;
670	else
671		microuptime(&p->p_switchtime);
672	splx(x);
673}
674
675/*
676 * Initialize the (doubly-linked) run queues
677 * to be empty.
678 */
679/* ARGSUSED*/
680static void
681rqinit(dummy)
682	void *dummy;
683{
684	register int i;
685
686	for (i = 0; i < NQS; i++) {
687		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
688		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
689		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
690	}
691}
692
693/*
694 * Change process state to be runnable,
695 * placing it on the run queue if it is in memory,
696 * and awakening the swapper if it isn't in memory.
697 */
698void
699setrunnable(p)
700	register struct proc *p;
701{
702	register int s;
703
704	s = splhigh();
705	switch (p->p_stat) {
706	case 0:
707	case SRUN:
708	case SZOMB:
709	default:
710		panic("setrunnable");
711	case SSTOP:
712	case SSLEEP:
713		unsleep(p);		/* e.g. when sending signals */
714		break;
715
716	case SIDL:
717		break;
718	}
719	p->p_stat = SRUN;
720	if (p->p_flag & P_INMEM)
721		setrunqueue(p);
722	splx(s);
723	if (p->p_slptime > 1)
724		updatepri(p);
725	p->p_slptime = 0;
726	if ((p->p_flag & P_INMEM) == 0) {
727		p->p_flag |= P_SWAPINREQ;
728		wakeup((caddr_t)&proc0);
729	}
730	else
731		maybe_resched(p);
732}
733
734/*
735 * Compute the priority of a process when running in user mode.
736 * Arrange to reschedule if the resulting priority is better
737 * than that of the current process.
738 */
739void
740resetpriority(p)
741	register struct proc *p;
742{
743	register unsigned int newpriority;
744
745	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
746		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
747		newpriority = min(newpriority, MAXPRI);
748		p->p_usrpri = newpriority;
749	}
750	maybe_resched(p);
751}
752
753/* ARGSUSED */
754static void sched_setup __P((void *dummy));
755static void
756sched_setup(dummy)
757	void *dummy;
758{
759	/* Kick off timeout driven events by calling first time. */
760	roundrobin(NULL);
761	schedcpu(NULL);
762}
763SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
764
765