kern_synch.c revision 37649
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.60 1998/07/11 13:06:41 bde Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#ifdef SMP
61#include <machine/smp.h>
62#endif
63#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64
65static void rqinit __P((void *));
66SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67
68u_char	curpriority;		/* usrpri of curproc */
69int	lbolt;			/* once a second sleep address */
70
71static void	endtsleep __P((void *));
72static void	roundrobin __P((void *arg));
73static void	schedcpu __P((void *arg));
74static void	updatepri __P((struct proc *p));
75
76#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
77#ifndef DEFAULT_SCHEDULE_QUANTUM
78#define DEFAULT_SCHEDULE_QUANTUM 10
79#endif
80static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
81
82static int
83sysctl_kern_quantum SYSCTL_HANDLER_ARGS
84{
85	int error;
86	int new_val = quantum;
87
88	new_val = quantum;
89	error = sysctl_handle_int(oidp, &new_val, 0, req);
90	if (error == 0) {
91		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
92			quantum = new_val;
93		} else {
94			error = EINVAL;
95		}
96	}
97	return (error);
98}
99
100SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
101	0, sizeof quantum, sysctl_kern_quantum, "I", "");
102
103/* maybe_resched: Decide if you need to reschedule or not
104 * taking the priorities and schedulers into account.
105 */
106static void maybe_resched(struct proc *chk)
107{
108	struct proc *p = curproc; /* XXX */
109
110	/* If the current scheduler is the idle scheduler or
111	 * the priority of the new one is higher then reschedule.
112	 */
113	if (p == 0 ||
114	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_IDLE ||
115	(chk->p_priority < curpriority &&
116	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) )
117		need_resched();
118}
119
120#define ROUNDROBIN_INTERVAL (hz / quantum)
121int roundrobin_interval(void)
122{
123	return ROUNDROBIN_INTERVAL;
124}
125
126/*
127 * Force switch among equal priority processes every 100ms.
128 */
129/* ARGSUSED */
130static void
131roundrobin(arg)
132	void *arg;
133{
134 	struct proc *p = curproc; /* XXX */
135
136#ifdef SMP
137	need_resched();
138	forward_roundrobin();
139#else
140 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
141 		need_resched();
142#endif
143
144 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
145}
146
147/*
148 * Constants for digital decay and forget:
149 *	90% of (p_estcpu) usage in 5 * loadav time
150 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151 *          Note that, as ps(1) mentions, this can let percentages
152 *          total over 100% (I've seen 137.9% for 3 processes).
153 *
154 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
155 *
156 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157 * That is, the system wants to compute a value of decay such
158 * that the following for loop:
159 * 	for (i = 0; i < (5 * loadavg); i++)
160 * 		p_estcpu *= decay;
161 * will compute
162 * 	p_estcpu *= 0.1;
163 * for all values of loadavg:
164 *
165 * Mathematically this loop can be expressed by saying:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * The system computes decay as:
169 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
170 *
171 * We wish to prove that the system's computation of decay
172 * will always fulfill the equation:
173 * 	decay ** (5 * loadavg) ~= .1
174 *
175 * If we compute b as:
176 * 	b = 2 * loadavg
177 * then
178 * 	decay = b / (b + 1)
179 *
180 * We now need to prove two things:
181 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183 *
184 * Facts:
185 *         For x close to zero, exp(x) =~ 1 + x, since
186 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
187 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188 *         For x close to zero, ln(1+x) =~ x, since
189 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
190 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191 *         ln(.1) =~ -2.30
192 *
193 * Proof of (1):
194 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
195 *	solving for factor,
196 *      ln(factor) =~ (-2.30/5*loadav), or
197 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
199 *
200 * Proof of (2):
201 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202 *	solving for power,
203 *      power*ln(b/(b+1)) =~ -2.30, or
204 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
205 *
206 * Actual power values for the implemented algorithm are as follows:
207 *      loadav: 1       2       3       4
208 *      power:  5.68    10.32   14.94   19.55
209 */
210
211/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212#define	loadfactor(loadav)	(2 * (loadav))
213#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214
215/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
217SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
218
219/* kernel uses `FSCALE', user uses `fscale' */
220static int	fscale = FSCALE;
221SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
222
223/*
224 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 *
228 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 *
231 * If you don't want to bother with the faster/more-accurate formula, you
232 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 * (more general) method of calculating the %age of CPU used by a process.
234 */
235#define	CCPU_SHIFT	11
236
237/*
238 * Recompute process priorities, every hz ticks.
239 */
240/* ARGSUSED */
241static void
242schedcpu(arg)
243	void *arg;
244{
245	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
246	register struct proc *p;
247	register int s;
248	register unsigned int newcpu;
249
250	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
251		/*
252		 * Increment time in/out of memory and sleep time
253		 * (if sleeping).  We ignore overflow; with 16-bit int's
254		 * (remember them?) overflow takes 45 days.
255		 */
256		p->p_swtime++;
257		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
258			p->p_slptime++;
259		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
260		/*
261		 * If the process has slept the entire second,
262		 * stop recalculating its priority until it wakes up.
263		 */
264		if (p->p_slptime > 1)
265			continue;
266		s = splhigh();	/* prevent state changes and protect run queue */
267		/*
268		 * p_pctcpu is only for ps.
269		 */
270#if	(FSHIFT >= CCPU_SHIFT)
271		p->p_pctcpu += (hz == 100)?
272			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
273                	100 * (((fixpt_t) p->p_cpticks)
274				<< (FSHIFT - CCPU_SHIFT)) / hz;
275#else
276		p->p_pctcpu += ((FSCALE - ccpu) *
277			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
278#endif
279		p->p_cpticks = 0;
280		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
281		p->p_estcpu = min(newcpu, UCHAR_MAX);
282		resetpriority(p);
283		if (p->p_priority >= PUSER) {
284#define	PPQ	(128 / NQS)		/* priorities per queue */
285			if ((p != curproc) &&
286#ifdef SMP
287			    (u_char)p->p_oncpu == 0xff && 	/* idle */
288#endif
289			    p->p_stat == SRUN &&
290			    (p->p_flag & P_INMEM) &&
291			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
292				remrq(p);
293				p->p_priority = p->p_usrpri;
294				setrunqueue(p);
295			} else
296				p->p_priority = p->p_usrpri;
297		}
298		splx(s);
299	}
300	vmmeter();
301	wakeup((caddr_t)&lbolt);
302	timeout(schedcpu, (void *)0, hz);
303}
304
305/*
306 * Recalculate the priority of a process after it has slept for a while.
307 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
308 * least six times the loadfactor will decay p_estcpu to zero.
309 */
310static void
311updatepri(p)
312	register struct proc *p;
313{
314	register unsigned int newcpu = p->p_estcpu;
315	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
316
317	if (p->p_slptime > 5 * loadfac)
318		p->p_estcpu = 0;
319	else {
320		p->p_slptime--;	/* the first time was done in schedcpu */
321		while (newcpu && --p->p_slptime)
322			newcpu = (int) decay_cpu(loadfac, newcpu);
323		p->p_estcpu = min(newcpu, UCHAR_MAX);
324	}
325	resetpriority(p);
326}
327
328/*
329 * We're only looking at 7 bits of the address; everything is
330 * aligned to 4, lots of things are aligned to greater powers
331 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
332 */
333#define TABLESIZE	128
334static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
335#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
336
337/*
338 * During autoconfiguration or after a panic, a sleep will simply
339 * lower the priority briefly to allow interrupts, then return.
340 * The priority to be used (safepri) is machine-dependent, thus this
341 * value is initialized and maintained in the machine-dependent layers.
342 * This priority will typically be 0, or the lowest priority
343 * that is safe for use on the interrupt stack; it can be made
344 * higher to block network software interrupts after panics.
345 */
346int safepri;
347
348void
349sleepinit()
350{
351	int i;
352
353	for (i = 0; i < TABLESIZE; i++)
354		TAILQ_INIT(&slpque[i]);
355}
356
357/*
358 * General sleep call.  Suspends the current process until a wakeup is
359 * performed on the specified identifier.  The process will then be made
360 * runnable with the specified priority.  Sleeps at most timo/hz seconds
361 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
362 * before and after sleeping, else signals are not checked.  Returns 0 if
363 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
364 * signal needs to be delivered, ERESTART is returned if the current system
365 * call should be restarted if possible, and EINTR is returned if the system
366 * call should be interrupted by the signal (return EINTR).
367 */
368int
369tsleep(ident, priority, wmesg, timo)
370	void *ident;
371	int priority, timo;
372	const char *wmesg;
373{
374	struct proc *p = curproc;
375	int s, sig, catch = priority & PCATCH;
376	struct callout_handle thandle;
377
378#ifdef KTRACE
379	if (KTRPOINT(p, KTR_CSW))
380		ktrcsw(p->p_tracep, 1, 0);
381#endif
382	s = splhigh();
383	if (cold || panicstr) {
384		/*
385		 * After a panic, or during autoconfiguration,
386		 * just give interrupts a chance, then just return;
387		 * don't run any other procs or panic below,
388		 * in case this is the idle process and already asleep.
389		 */
390		splx(safepri);
391		splx(s);
392		return (0);
393	}
394#ifdef DIAGNOSTIC
395	if(p == NULL)
396		panic("tsleep1");
397	if (ident == NULL || p->p_stat != SRUN)
398		panic("tsleep");
399	/* XXX This is not exhaustive, just the most common case */
400	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
401		panic("sleeping process already on another queue");
402#endif
403	p->p_wchan = ident;
404	p->p_wmesg = wmesg;
405	p->p_slptime = 0;
406	p->p_priority = priority & PRIMASK;
407	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
408	if (timo)
409		thandle = timeout(endtsleep, (void *)p, timo);
410	/*
411	 * We put ourselves on the sleep queue and start our timeout
412	 * before calling CURSIG, as we could stop there, and a wakeup
413	 * or a SIGCONT (or both) could occur while we were stopped.
414	 * A SIGCONT would cause us to be marked as SSLEEP
415	 * without resuming us, thus we must be ready for sleep
416	 * when CURSIG is called.  If the wakeup happens while we're
417	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
418	 */
419	if (catch) {
420		p->p_flag |= P_SINTR;
421		if ((sig = CURSIG(p))) {
422			if (p->p_wchan)
423				unsleep(p);
424			p->p_stat = SRUN;
425			goto resume;
426		}
427		if (p->p_wchan == 0) {
428			catch = 0;
429			goto resume;
430		}
431	} else
432		sig = 0;
433	p->p_stat = SSLEEP;
434	p->p_stats->p_ru.ru_nvcsw++;
435	mi_switch();
436resume:
437	curpriority = p->p_usrpri;
438	splx(s);
439	p->p_flag &= ~P_SINTR;
440	if (p->p_flag & P_TIMEOUT) {
441		p->p_flag &= ~P_TIMEOUT;
442		if (sig == 0) {
443#ifdef KTRACE
444			if (KTRPOINT(p, KTR_CSW))
445				ktrcsw(p->p_tracep, 0, 0);
446#endif
447			return (EWOULDBLOCK);
448		}
449	} else if (timo)
450		untimeout(endtsleep, (void *)p, thandle);
451	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
452#ifdef KTRACE
453		if (KTRPOINT(p, KTR_CSW))
454			ktrcsw(p->p_tracep, 0, 0);
455#endif
456		if (p->p_sigacts->ps_sigintr & sigmask(sig))
457			return (EINTR);
458		return (ERESTART);
459	}
460#ifdef KTRACE
461	if (KTRPOINT(p, KTR_CSW))
462		ktrcsw(p->p_tracep, 0, 0);
463#endif
464	return (0);
465}
466
467/*
468 * Implement timeout for tsleep.
469 * If process hasn't been awakened (wchan non-zero),
470 * set timeout flag and undo the sleep.  If proc
471 * is stopped, just unsleep so it will remain stopped.
472 */
473static void
474endtsleep(arg)
475	void *arg;
476{
477	register struct proc *p;
478	int s;
479
480	p = (struct proc *)arg;
481	s = splhigh();
482	if (p->p_wchan) {
483		if (p->p_stat == SSLEEP)
484			setrunnable(p);
485		else
486			unsleep(p);
487		p->p_flag |= P_TIMEOUT;
488	}
489	splx(s);
490}
491
492/*
493 * Remove a process from its wait queue
494 */
495void
496unsleep(p)
497	register struct proc *p;
498{
499	int s;
500
501	s = splhigh();
502	if (p->p_wchan) {
503		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
504		p->p_wchan = 0;
505	}
506	splx(s);
507}
508
509/*
510 * Make all processes sleeping on the specified identifier runnable.
511 */
512void
513wakeup(ident)
514	register void *ident;
515{
516	register struct slpquehead *qp;
517	register struct proc *p;
518	int s;
519
520	s = splhigh();
521	qp = &slpque[LOOKUP(ident)];
522restart:
523	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
524#ifdef DIAGNOSTIC
525		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
526			panic("wakeup");
527#endif
528		if (p->p_wchan == ident) {
529			TAILQ_REMOVE(qp, p, p_procq);
530			p->p_wchan = 0;
531			if (p->p_stat == SSLEEP) {
532				/* OPTIMIZED EXPANSION OF setrunnable(p); */
533				if (p->p_slptime > 1)
534					updatepri(p);
535				p->p_slptime = 0;
536				p->p_stat = SRUN;
537				if (p->p_flag & P_INMEM) {
538					setrunqueue(p);
539					maybe_resched(p);
540				} else {
541					p->p_flag |= P_SWAPINREQ;
542					wakeup((caddr_t)&proc0);
543				}
544				/* END INLINE EXPANSION */
545				goto restart;
546			}
547		}
548	}
549	splx(s);
550}
551
552/*
553 * Make a process sleeping on the specified identifier runnable.
554 * May wake more than one process if a target prcoess is currently
555 * swapped out.
556 */
557void
558wakeup_one(ident)
559	register void *ident;
560{
561	register struct slpquehead *qp;
562	register struct proc *p;
563	int s;
564
565	s = splhigh();
566	qp = &slpque[LOOKUP(ident)];
567
568	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
569#ifdef DIAGNOSTIC
570		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
571			panic("wakeup_one");
572#endif
573		if (p->p_wchan == ident) {
574			TAILQ_REMOVE(qp, p, p_procq);
575			p->p_wchan = 0;
576			if (p->p_stat == SSLEEP) {
577				/* OPTIMIZED EXPANSION OF setrunnable(p); */
578				if (p->p_slptime > 1)
579					updatepri(p);
580				p->p_slptime = 0;
581				p->p_stat = SRUN;
582				if (p->p_flag & P_INMEM) {
583					setrunqueue(p);
584					maybe_resched(p);
585					break;
586				} else {
587					p->p_flag |= P_SWAPINREQ;
588					wakeup((caddr_t)&proc0);
589				}
590				/* END INLINE EXPANSION */
591			}
592		}
593	}
594	splx(s);
595}
596
597/*
598 * The machine independent parts of mi_switch().
599 * Must be called at splstatclock() or higher.
600 */
601void
602mi_switch()
603{
604	register struct proc *p = curproc;	/* XXX */
605	register struct rlimit *rlim;
606	int x;
607
608	/*
609	 * XXX this spl is almost unnecessary.  It is partly to allow for
610	 * sloppy callers that don't do it (issignal() via CURSIG() is the
611	 * main offender).  It is partly to work around a bug in the i386
612	 * cpu_switch() (the ipl is not preserved).  We ran for years
613	 * without it.  I think there was only a interrupt latency problem.
614	 * The main caller, tsleep(), does an splx() a couple of instructions
615	 * after calling here.  The buggy caller, issignal(), usually calls
616	 * here at spl0() and sometimes returns at splhigh().  The process
617	 * then runs for a little too long at splhigh().  The ipl gets fixed
618	 * when the process returns to user mode (or earlier).
619	 *
620	 * It would probably be better to always call here at spl0(). Callers
621	 * are prepared to give up control to another process, so they must
622	 * be prepared to be interrupted.  The clock stuff here may not
623	 * actually need splstatclock().
624	 */
625	x = splstatclock();
626
627#ifdef SIMPLELOCK_DEBUG
628	if (p->p_simple_locks)
629		printf("sleep: holding simple lock\n");
630#endif
631	/*
632	 * Compute the amount of time during which the current
633	 * process was running, and add that to its total so far.
634	 */
635	microuptime(&switchtime);
636	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
637	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
638
639	/*
640	 * Check if the process exceeds its cpu resource allocation.
641	 * If over max, kill it.
642	 */
643	if (p->p_stat != SZOMB && p->p_runtime > p->p_limit->p_cpulimit) {
644		rlim = &p->p_rlimit[RLIMIT_CPU];
645		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
646			killproc(p, "exceeded maximum CPU limit");
647		} else {
648			psignal(p, SIGXCPU);
649			if (rlim->rlim_cur < rlim->rlim_max) {
650				/* XXX: we should make a private copy */
651				rlim->rlim_cur += 5;
652			}
653		}
654	}
655
656	/*
657	 * Pick a new current process and record its start time.
658	 */
659	cnt.v_swtch++;
660	cpu_switch(p);
661	if (switchtime.tv_sec)
662		p->p_switchtime = switchtime;
663	else
664		microuptime(&p->p_switchtime);
665	splx(x);
666}
667
668/*
669 * Initialize the (doubly-linked) run queues
670 * to be empty.
671 */
672/* ARGSUSED*/
673static void
674rqinit(dummy)
675	void *dummy;
676{
677	register int i;
678
679	for (i = 0; i < NQS; i++) {
680		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
681		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
682		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
683	}
684}
685
686/*
687 * Change process state to be runnable,
688 * placing it on the run queue if it is in memory,
689 * and awakening the swapper if it isn't in memory.
690 */
691void
692setrunnable(p)
693	register struct proc *p;
694{
695	register int s;
696
697	s = splhigh();
698	switch (p->p_stat) {
699	case 0:
700	case SRUN:
701	case SZOMB:
702	default:
703		panic("setrunnable");
704	case SSTOP:
705	case SSLEEP:
706		unsleep(p);		/* e.g. when sending signals */
707		break;
708
709	case SIDL:
710		break;
711	}
712	p->p_stat = SRUN;
713	if (p->p_flag & P_INMEM)
714		setrunqueue(p);
715	splx(s);
716	if (p->p_slptime > 1)
717		updatepri(p);
718	p->p_slptime = 0;
719	if ((p->p_flag & P_INMEM) == 0) {
720		p->p_flag |= P_SWAPINREQ;
721		wakeup((caddr_t)&proc0);
722	}
723	else
724		maybe_resched(p);
725}
726
727/*
728 * Compute the priority of a process when running in user mode.
729 * Arrange to reschedule if the resulting priority is better
730 * than that of the current process.
731 */
732void
733resetpriority(p)
734	register struct proc *p;
735{
736	register unsigned int newpriority;
737
738	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
739		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
740		newpriority = min(newpriority, MAXPRI);
741		p->p_usrpri = newpriority;
742	}
743	maybe_resched(p);
744}
745
746/* ARGSUSED */
747static void sched_setup __P((void *dummy));
748static void
749sched_setup(dummy)
750	void *dummy;
751{
752	/* Kick off timeout driven events by calling first time. */
753	roundrobin(NULL);
754	schedcpu(NULL);
755}
756SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
757
758