kern_synch.c revision 36119
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.54 1998/04/04 13:25:20 phk Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/uio.h>
56#include <sys/ktrace.h>
57#endif
58
59#include <machine/cpu.h>
60#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
61
62static void rqinit __P((void *));
63SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
64
65u_char	curpriority;		/* usrpri of curproc */
66int	lbolt;			/* once a second sleep address */
67
68static void	endtsleep __P((void *));
69static void	roundrobin __P((void *arg));
70static void	schedcpu __P((void *arg));
71static void	updatepri __P((struct proc *p));
72
73#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
74#ifndef DEFAULT_SCHEDULE_QUANTUM
75#define DEFAULT_SCHEDULE_QUANTUM 10
76#endif
77static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
78
79static int
80sysctl_kern_quantum SYSCTL_HANDLER_ARGS
81{
82	int error;
83	int new_val = quantum;
84
85	new_val = quantum;
86	error = sysctl_handle_int(oidp, &new_val, 0, req);
87	if (error == 0) {
88		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
89			quantum = new_val;
90		} else {
91			error = EINVAL;
92		}
93	}
94	return (error);
95}
96
97SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
98	0, sizeof quantum, sysctl_kern_quantum, "I", "");
99
100/* maybe_resched: Decide if you need to reschedule or not
101 * taking the priorities and schedulers into account.
102 */
103static void maybe_resched(struct proc *chk)
104{
105	struct proc *p = curproc; /* XXX */
106
107	/* If the current scheduler is the idle scheduler or
108	 * the priority of the new one is higher then reschedule.
109	 */
110	if (p == 0 ||
111	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_IDLE ||
112	(chk->p_priority < curpriority &&
113	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) )
114		need_resched();
115}
116
117#define ROUNDROBIN_INTERVAL (hz / quantum)
118int roundrobin_interval(void)
119{
120	return ROUNDROBIN_INTERVAL;
121}
122
123/*
124 * Force switch among equal priority processes every 100ms.
125 */
126/* ARGSUSED */
127static void
128roundrobin(arg)
129	void *arg;
130{
131 	struct proc *p = curproc; /* XXX */
132
133 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
134 		need_resched();
135
136 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
137}
138
139/*
140 * Constants for digital decay and forget:
141 *	90% of (p_estcpu) usage in 5 * loadav time
142 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
143 *          Note that, as ps(1) mentions, this can let percentages
144 *          total over 100% (I've seen 137.9% for 3 processes).
145 *
146 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
147 *
148 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
149 * That is, the system wants to compute a value of decay such
150 * that the following for loop:
151 * 	for (i = 0; i < (5 * loadavg); i++)
152 * 		p_estcpu *= decay;
153 * will compute
154 * 	p_estcpu *= 0.1;
155 * for all values of loadavg:
156 *
157 * Mathematically this loop can be expressed by saying:
158 * 	decay ** (5 * loadavg) ~= .1
159 *
160 * The system computes decay as:
161 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
162 *
163 * We wish to prove that the system's computation of decay
164 * will always fulfill the equation:
165 * 	decay ** (5 * loadavg) ~= .1
166 *
167 * If we compute b as:
168 * 	b = 2 * loadavg
169 * then
170 * 	decay = b / (b + 1)
171 *
172 * We now need to prove two things:
173 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
174 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
175 *
176 * Facts:
177 *         For x close to zero, exp(x) =~ 1 + x, since
178 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
179 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
180 *         For x close to zero, ln(1+x) =~ x, since
181 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
182 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
183 *         ln(.1) =~ -2.30
184 *
185 * Proof of (1):
186 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
187 *	solving for factor,
188 *      ln(factor) =~ (-2.30/5*loadav), or
189 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
190 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
191 *
192 * Proof of (2):
193 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
194 *	solving for power,
195 *      power*ln(b/(b+1)) =~ -2.30, or
196 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
197 *
198 * Actual power values for the implemented algorithm are as follows:
199 *      loadav: 1       2       3       4
200 *      power:  5.68    10.32   14.94   19.55
201 */
202
203/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
204#define	loadfactor(loadav)	(2 * (loadav))
205#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
206
207/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
208static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
209
210/*
211 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
212 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
213 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
214 *
215 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
216 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
217 *
218 * If you don't want to bother with the faster/more-accurate formula, you
219 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
220 * (more general) method of calculating the %age of CPU used by a process.
221 */
222#define	CCPU_SHIFT	11
223
224/*
225 * Recompute process priorities, every hz ticks.
226 */
227/* ARGSUSED */
228static void
229schedcpu(arg)
230	void *arg;
231{
232	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
233	register struct proc *p;
234	register int s;
235	register unsigned int newcpu;
236
237	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
238		/*
239		 * Increment time in/out of memory and sleep time
240		 * (if sleeping).  We ignore overflow; with 16-bit int's
241		 * (remember them?) overflow takes 45 days.
242		 */
243		p->p_swtime++;
244		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
245			p->p_slptime++;
246		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
247		/*
248		 * If the process has slept the entire second,
249		 * stop recalculating its priority until it wakes up.
250		 */
251		if (p->p_slptime > 1)
252			continue;
253		s = splhigh();	/* prevent state changes and protect run queue */
254		/*
255		 * p_pctcpu is only for ps.
256		 */
257#if	(FSHIFT >= CCPU_SHIFT)
258		p->p_pctcpu += (hz == 100)?
259			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
260                	100 * (((fixpt_t) p->p_cpticks)
261				<< (FSHIFT - CCPU_SHIFT)) / hz;
262#else
263		p->p_pctcpu += ((FSCALE - ccpu) *
264			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
265#endif
266		p->p_cpticks = 0;
267		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
268		p->p_estcpu = min(newcpu, UCHAR_MAX);
269		resetpriority(p);
270		if (p->p_priority >= PUSER) {
271#define	PPQ	(128 / NQS)		/* priorities per queue */
272			if ((p != curproc) &&
273#ifdef SMP
274			    (u_char)p->p_oncpu == 0xff && 	/* idle */
275#endif
276			    p->p_stat == SRUN &&
277			    (p->p_flag & P_INMEM) &&
278			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
279				remrq(p);
280				p->p_priority = p->p_usrpri;
281				setrunqueue(p);
282			} else
283				p->p_priority = p->p_usrpri;
284		}
285		splx(s);
286	}
287	vmmeter();
288	wakeup((caddr_t)&lbolt);
289	timeout(schedcpu, (void *)0, hz);
290}
291
292/*
293 * Recalculate the priority of a process after it has slept for a while.
294 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
295 * least six times the loadfactor will decay p_estcpu to zero.
296 */
297static void
298updatepri(p)
299	register struct proc *p;
300{
301	register unsigned int newcpu = p->p_estcpu;
302	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
303
304	if (p->p_slptime > 5 * loadfac)
305		p->p_estcpu = 0;
306	else {
307		p->p_slptime--;	/* the first time was done in schedcpu */
308		while (newcpu && --p->p_slptime)
309			newcpu = (int) decay_cpu(loadfac, newcpu);
310		p->p_estcpu = min(newcpu, UCHAR_MAX);
311	}
312	resetpriority(p);
313}
314
315/*
316 * We're only looking at 7 bits of the address; everything is
317 * aligned to 4, lots of things are aligned to greater powers
318 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
319 */
320#define TABLESIZE	128
321static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
322#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
323
324/*
325 * During autoconfiguration or after a panic, a sleep will simply
326 * lower the priority briefly to allow interrupts, then return.
327 * The priority to be used (safepri) is machine-dependent, thus this
328 * value is initialized and maintained in the machine-dependent layers.
329 * This priority will typically be 0, or the lowest priority
330 * that is safe for use on the interrupt stack; it can be made
331 * higher to block network software interrupts after panics.
332 */
333int safepri;
334
335void
336sleepinit()
337{
338	int i;
339
340	for (i = 0; i < TABLESIZE; i++)
341		TAILQ_INIT(&slpque[i]);
342}
343
344/*
345 * General sleep call.  Suspends the current process until a wakeup is
346 * performed on the specified identifier.  The process will then be made
347 * runnable with the specified priority.  Sleeps at most timo/hz seconds
348 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
349 * before and after sleeping, else signals are not checked.  Returns 0 if
350 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
351 * signal needs to be delivered, ERESTART is returned if the current system
352 * call should be restarted if possible, and EINTR is returned if the system
353 * call should be interrupted by the signal (return EINTR).
354 */
355int
356tsleep(ident, priority, wmesg, timo)
357	void *ident;
358	int priority, timo;
359	const char *wmesg;
360{
361	struct proc *p = curproc;
362	int s, sig, catch = priority & PCATCH;
363	struct callout_handle thandle;
364
365#ifdef KTRACE
366	if (KTRPOINT(p, KTR_CSW))
367		ktrcsw(p->p_tracep, 1, 0);
368#endif
369	s = splhigh();
370	if (cold || panicstr) {
371		/*
372		 * After a panic, or during autoconfiguration,
373		 * just give interrupts a chance, then just return;
374		 * don't run any other procs or panic below,
375		 * in case this is the idle process and already asleep.
376		 */
377		splx(safepri);
378		splx(s);
379		return (0);
380	}
381#ifdef DIAGNOSTIC
382	if(p == NULL)
383		panic("tsleep1");
384	if (ident == NULL || p->p_stat != SRUN)
385		panic("tsleep");
386	/* XXX This is not exhaustive, just the most common case */
387	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
388		panic("sleeping process already on another queue");
389#endif
390	p->p_wchan = ident;
391	p->p_wmesg = wmesg;
392	p->p_slptime = 0;
393	p->p_priority = priority & PRIMASK;
394	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
395	if (timo)
396		thandle = timeout(endtsleep, (void *)p, timo);
397	/*
398	 * We put ourselves on the sleep queue and start our timeout
399	 * before calling CURSIG, as we could stop there, and a wakeup
400	 * or a SIGCONT (or both) could occur while we were stopped.
401	 * A SIGCONT would cause us to be marked as SSLEEP
402	 * without resuming us, thus we must be ready for sleep
403	 * when CURSIG is called.  If the wakeup happens while we're
404	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
405	 */
406	if (catch) {
407		p->p_flag |= P_SINTR;
408		if ((sig = CURSIG(p))) {
409			if (p->p_wchan)
410				unsleep(p);
411			p->p_stat = SRUN;
412			goto resume;
413		}
414		if (p->p_wchan == 0) {
415			catch = 0;
416			goto resume;
417		}
418	} else
419		sig = 0;
420	p->p_stat = SSLEEP;
421	p->p_stats->p_ru.ru_nvcsw++;
422	mi_switch();
423resume:
424	curpriority = p->p_usrpri;
425	splx(s);
426	p->p_flag &= ~P_SINTR;
427	if (p->p_flag & P_TIMEOUT) {
428		p->p_flag &= ~P_TIMEOUT;
429		if (sig == 0) {
430#ifdef KTRACE
431			if (KTRPOINT(p, KTR_CSW))
432				ktrcsw(p->p_tracep, 0, 0);
433#endif
434			return (EWOULDBLOCK);
435		}
436	} else if (timo)
437		untimeout(endtsleep, (void *)p, thandle);
438	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
439#ifdef KTRACE
440		if (KTRPOINT(p, KTR_CSW))
441			ktrcsw(p->p_tracep, 0, 0);
442#endif
443		if (p->p_sigacts->ps_sigintr & sigmask(sig))
444			return (EINTR);
445		return (ERESTART);
446	}
447#ifdef KTRACE
448	if (KTRPOINT(p, KTR_CSW))
449		ktrcsw(p->p_tracep, 0, 0);
450#endif
451	return (0);
452}
453
454/*
455 * Implement timeout for tsleep.
456 * If process hasn't been awakened (wchan non-zero),
457 * set timeout flag and undo the sleep.  If proc
458 * is stopped, just unsleep so it will remain stopped.
459 */
460static void
461endtsleep(arg)
462	void *arg;
463{
464	register struct proc *p;
465	int s;
466
467	p = (struct proc *)arg;
468	s = splhigh();
469	if (p->p_wchan) {
470		if (p->p_stat == SSLEEP)
471			setrunnable(p);
472		else
473			unsleep(p);
474		p->p_flag |= P_TIMEOUT;
475	}
476	splx(s);
477}
478
479/*
480 * Remove a process from its wait queue
481 */
482void
483unsleep(p)
484	register struct proc *p;
485{
486	int s;
487
488	s = splhigh();
489	if (p->p_wchan) {
490		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
491		p->p_wchan = 0;
492	}
493	splx(s);
494}
495
496/*
497 * Make all processes sleeping on the specified identifier runnable.
498 */
499void
500wakeup(ident)
501	register void *ident;
502{
503	register struct slpquehead *qp;
504	register struct proc *p;
505	int s;
506
507	s = splhigh();
508	qp = &slpque[LOOKUP(ident)];
509restart:
510	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
511#ifdef DIAGNOSTIC
512		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
513			panic("wakeup");
514#endif
515		if (p->p_wchan == ident) {
516			TAILQ_REMOVE(qp, p, p_procq);
517			p->p_wchan = 0;
518			if (p->p_stat == SSLEEP) {
519				/* OPTIMIZED EXPANSION OF setrunnable(p); */
520				if (p->p_slptime > 1)
521					updatepri(p);
522				p->p_slptime = 0;
523				p->p_stat = SRUN;
524				if (p->p_flag & P_INMEM) {
525					setrunqueue(p);
526					maybe_resched(p);
527				} else {
528					p->p_flag |= P_SWAPINREQ;
529					wakeup((caddr_t)&proc0);
530				}
531				/* END INLINE EXPANSION */
532				goto restart;
533			}
534		}
535	}
536	splx(s);
537}
538
539/*
540 * Make a process sleeping on the specified identifier runnable.
541 * May wake more than one process if a target prcoess is currently
542 * swapped out.
543 */
544void
545wakeup_one(ident)
546	register void *ident;
547{
548	register struct slpquehead *qp;
549	register struct proc *p;
550	int s;
551
552	s = splhigh();
553	qp = &slpque[LOOKUP(ident)];
554
555	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
556#ifdef DIAGNOSTIC
557		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
558			panic("wakeup_one");
559#endif
560		if (p->p_wchan == ident) {
561			TAILQ_REMOVE(qp, p, p_procq);
562			p->p_wchan = 0;
563			if (p->p_stat == SSLEEP) {
564				/* OPTIMIZED EXPANSION OF setrunnable(p); */
565				if (p->p_slptime > 1)
566					updatepri(p);
567				p->p_slptime = 0;
568				p->p_stat = SRUN;
569				if (p->p_flag & P_INMEM) {
570					setrunqueue(p);
571					maybe_resched(p);
572					break;
573				} else {
574					p->p_flag |= P_SWAPINREQ;
575					wakeup((caddr_t)&proc0);
576				}
577				/* END INLINE EXPANSION */
578			}
579		}
580	}
581	splx(s);
582}
583
584/*
585 * The machine independent parts of mi_switch().
586 * Must be called at splstatclock() or higher.
587 */
588void
589mi_switch()
590{
591	register struct proc *p = curproc;	/* XXX */
592	register struct rlimit *rlim;
593	register long s, u;
594	int x;
595	struct timeval tv;
596
597	/*
598	 * XXX this spl is almost unnecessary.  It is partly to allow for
599	 * sloppy callers that don't do it (issignal() via CURSIG() is the
600	 * main offender).  It is partly to work around a bug in the i386
601	 * cpu_switch() (the ipl is not preserved).  We ran for years
602	 * without it.  I think there was only a interrupt latency problem.
603	 * The main caller, tsleep(), does an splx() a couple of instructions
604	 * after calling here.  The buggy caller, issignal(), usually calls
605	 * here at spl0() and sometimes returns at splhigh().  The process
606	 * then runs for a little too long at splhigh().  The ipl gets fixed
607	 * when the process returns to user mode (or earlier).
608	 *
609	 * It would probably be better to always call here at spl0(). Callers
610	 * are prepared to give up control to another process, so they must
611	 * be prepared to be interrupted.  The clock stuff here may not
612	 * actually need splstatclock().
613	 */
614	x = splstatclock();
615
616#ifdef SIMPLELOCK_DEBUG
617	if (p->p_simple_locks)
618		printf("sleep: holding simple lock\n");
619#endif
620	/*
621	 * Compute the amount of time during which the current
622	 * process was running, and add that to its total so far.
623	 */
624	microuptime(&tv);
625	u = p->p_rtime.tv_usec + (tv.tv_usec - p->p_runtime.tv_usec);
626	s = p->p_rtime.tv_sec + (tv.tv_sec - p->p_runtime.tv_sec);
627	if (u < 0) {
628		u += 1000000;
629		s--;
630	} else if (u >= 1000000) {
631		u -= 1000000;
632		s++;
633	}
634#ifdef SMP
635	if (s < 0)
636		s = u = 0;
637#endif
638	p->p_rtime.tv_usec = u;
639	p->p_rtime.tv_sec = s;
640
641	/*
642	 * Check if the process exceeds its cpu resource allocation.
643	 * If over max, kill it.
644	 */
645	if (p->p_stat != SZOMB) {
646		rlim = &p->p_rlimit[RLIMIT_CPU];
647		if (s >= rlim->rlim_cur) {
648			if (s >= rlim->rlim_max)
649				killproc(p, "exceeded maximum CPU limit");
650			else {
651				psignal(p, SIGXCPU);
652				if (rlim->rlim_cur < rlim->rlim_max)
653					rlim->rlim_cur += 5;
654			}
655		}
656	}
657
658	/*
659	 * Pick a new current process and record its start time.
660	 */
661	cnt.v_swtch++;
662	cpu_switch(p);
663	microuptime(&p->p_runtime);
664	splx(x);
665}
666
667/*
668 * Initialize the (doubly-linked) run queues
669 * to be empty.
670 */
671/* ARGSUSED*/
672static void
673rqinit(dummy)
674	void *dummy;
675{
676	register int i;
677
678	for (i = 0; i < NQS; i++) {
679		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
680		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
681		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
682	}
683}
684
685/*
686 * Change process state to be runnable,
687 * placing it on the run queue if it is in memory,
688 * and awakening the swapper if it isn't in memory.
689 */
690void
691setrunnable(p)
692	register struct proc *p;
693{
694	register int s;
695
696	s = splhigh();
697	switch (p->p_stat) {
698	case 0:
699	case SRUN:
700	case SZOMB:
701	default:
702		panic("setrunnable");
703	case SSTOP:
704	case SSLEEP:
705		unsleep(p);		/* e.g. when sending signals */
706		break;
707
708	case SIDL:
709		break;
710	}
711	p->p_stat = SRUN;
712	if (p->p_flag & P_INMEM)
713		setrunqueue(p);
714	splx(s);
715	if (p->p_slptime > 1)
716		updatepri(p);
717	p->p_slptime = 0;
718	if ((p->p_flag & P_INMEM) == 0) {
719		p->p_flag |= P_SWAPINREQ;
720		wakeup((caddr_t)&proc0);
721	}
722	else
723		maybe_resched(p);
724}
725
726/*
727 * Compute the priority of a process when running in user mode.
728 * Arrange to reschedule if the resulting priority is better
729 * than that of the current process.
730 */
731void
732resetpriority(p)
733	register struct proc *p;
734{
735	register unsigned int newpriority;
736
737	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
738		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
739		newpriority = min(newpriority, MAXPRI);
740		p->p_usrpri = newpriority;
741	}
742	maybe_resched(p);
743}
744
745/* ARGSUSED */
746static void sched_setup __P((void *dummy));
747static void
748sched_setup(dummy)
749	void *dummy;
750{
751	/* Kick off timeout driven events by calling first time. */
752	roundrobin(NULL);
753	schedcpu(NULL);
754}
755SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
756
757