kern_synch.c revision 34489
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.49 1998/03/08 09:56:59 julian Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/signalvar.h>
49#include <sys/resourcevar.h>
50#include <sys/vmmeter.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/ktrace.h>
56#endif
57
58#include <machine/cpu.h>
59#include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
60
61static void rqinit __P((void *));
62SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
63
64u_char	curpriority;		/* usrpri of curproc */
65int	lbolt;			/* once a second sleep address */
66
67static void	endtsleep __P((void *));
68static void	roundrobin __P((void *arg));
69static void	schedcpu __P((void *arg));
70static void	updatepri __P((struct proc *p));
71
72#define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
73#ifndef DEFAULT_SCHEDULE_QUANTUM
74#define DEFAULT_SCHEDULE_QUANTUM 10
75#endif
76static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
77
78static int
79sysctl_kern_quantum SYSCTL_HANDLER_ARGS
80{
81	int error;
82	int new_val = quantum;
83
84	new_val = quantum;
85	error = sysctl_handle_int(oidp, &new_val, 0, req);
86	if (error == 0) {
87		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
88			quantum = new_val;
89		} else {
90			error = EINVAL;
91		}
92	}
93	return (error);
94}
95
96SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
97	0, sizeof quantum, sysctl_kern_quantum, "I", "");
98
99/* maybe_resched: Decide if you need to reschedule or not
100 * taking the priorities and schedulers into account.
101 */
102static void maybe_resched(struct proc *chk)
103{
104	struct proc *p = curproc; /* XXX */
105
106	/* If the current scheduler is the idle scheduler or
107	 * the priority of the new one is higher then reschedule.
108	 */
109	if (p == 0 ||
110	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_IDLE ||
111	(chk->p_priority < curpriority &&
112	RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) )
113		need_resched();
114}
115
116#define ROUNDROBIN_INTERVAL (hz / quantum)
117int roundrobin_interval(void)
118{
119	return ROUNDROBIN_INTERVAL;
120}
121
122/*
123 * Force switch among equal priority processes every 100ms.
124 */
125/* ARGSUSED */
126static void
127roundrobin(arg)
128	void *arg;
129{
130 	struct proc *p = curproc; /* XXX */
131
132 	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
133 		need_resched();
134
135 	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
136}
137
138/*
139 * Constants for digital decay and forget:
140 *	90% of (p_estcpu) usage in 5 * loadav time
141 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
142 *          Note that, as ps(1) mentions, this can let percentages
143 *          total over 100% (I've seen 137.9% for 3 processes).
144 *
145 * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
146 *
147 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
148 * That is, the system wants to compute a value of decay such
149 * that the following for loop:
150 * 	for (i = 0; i < (5 * loadavg); i++)
151 * 		p_estcpu *= decay;
152 * will compute
153 * 	p_estcpu *= 0.1;
154 * for all values of loadavg:
155 *
156 * Mathematically this loop can be expressed by saying:
157 * 	decay ** (5 * loadavg) ~= .1
158 *
159 * The system computes decay as:
160 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
161 *
162 * We wish to prove that the system's computation of decay
163 * will always fulfill the equation:
164 * 	decay ** (5 * loadavg) ~= .1
165 *
166 * If we compute b as:
167 * 	b = 2 * loadavg
168 * then
169 * 	decay = b / (b + 1)
170 *
171 * We now need to prove two things:
172 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
173 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
174 *
175 * Facts:
176 *         For x close to zero, exp(x) =~ 1 + x, since
177 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
178 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
179 *         For x close to zero, ln(1+x) =~ x, since
180 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
181 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
182 *         ln(.1) =~ -2.30
183 *
184 * Proof of (1):
185 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
186 *	solving for factor,
187 *      ln(factor) =~ (-2.30/5*loadav), or
188 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
189 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
190 *
191 * Proof of (2):
192 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
193 *	solving for power,
194 *      power*ln(b/(b+1)) =~ -2.30, or
195 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
196 *
197 * Actual power values for the implemented algorithm are as follows:
198 *      loadav: 1       2       3       4
199 *      power:  5.68    10.32   14.94   19.55
200 */
201
202/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
203#define	loadfactor(loadav)	(2 * (loadav))
204#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
205
206/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
207static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
208
209/*
210 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
211 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
212 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
213 *
214 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
215 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
216 *
217 * If you don't want to bother with the faster/more-accurate formula, you
218 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
219 * (more general) method of calculating the %age of CPU used by a process.
220 */
221#define	CCPU_SHIFT	11
222
223/*
224 * Recompute process priorities, every hz ticks.
225 */
226/* ARGSUSED */
227static void
228schedcpu(arg)
229	void *arg;
230{
231	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
232	register struct proc *p;
233	register int s;
234	register unsigned int newcpu;
235
236	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
237		/*
238		 * Increment time in/out of memory and sleep time
239		 * (if sleeping).  We ignore overflow; with 16-bit int's
240		 * (remember them?) overflow takes 45 days.
241		 */
242		p->p_swtime++;
243		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
244			p->p_slptime++;
245		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
246		/*
247		 * If the process has slept the entire second,
248		 * stop recalculating its priority until it wakes up.
249		 */
250		if (p->p_slptime > 1)
251			continue;
252		s = splhigh();	/* prevent state changes and protect run queue */
253		/*
254		 * p_pctcpu is only for ps.
255		 */
256#if	(FSHIFT >= CCPU_SHIFT)
257		p->p_pctcpu += (hz == 100)?
258			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
259                	100 * (((fixpt_t) p->p_cpticks)
260				<< (FSHIFT - CCPU_SHIFT)) / hz;
261#else
262		p->p_pctcpu += ((FSCALE - ccpu) *
263			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
264#endif
265		p->p_cpticks = 0;
266		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
267		p->p_estcpu = min(newcpu, UCHAR_MAX);
268		resetpriority(p);
269		if (p->p_priority >= PUSER) {
270#define	PPQ	(128 / NQS)		/* priorities per queue */
271			if ((p != curproc) &&
272#ifdef SMP
273			    (u_char)p->p_oncpu == 0xff && 	/* idle */
274#endif
275			    p->p_stat == SRUN &&
276			    (p->p_flag & P_INMEM) &&
277			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
278				remrq(p);
279				p->p_priority = p->p_usrpri;
280				setrunqueue(p);
281			} else
282				p->p_priority = p->p_usrpri;
283		}
284		splx(s);
285	}
286	vmmeter();
287	wakeup((caddr_t)&lbolt);
288	timeout(schedcpu, (void *)0, hz);
289}
290
291/*
292 * Recalculate the priority of a process after it has slept for a while.
293 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
294 * least six times the loadfactor will decay p_estcpu to zero.
295 */
296static void
297updatepri(p)
298	register struct proc *p;
299{
300	register unsigned int newcpu = p->p_estcpu;
301	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
302
303	if (p->p_slptime > 5 * loadfac)
304		p->p_estcpu = 0;
305	else {
306		p->p_slptime--;	/* the first time was done in schedcpu */
307		while (newcpu && --p->p_slptime)
308			newcpu = (int) decay_cpu(loadfac, newcpu);
309		p->p_estcpu = min(newcpu, UCHAR_MAX);
310	}
311	resetpriority(p);
312}
313
314/*
315 * We're only looking at 7 bits of the address; everything is
316 * aligned to 4, lots of things are aligned to greater powers
317 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
318 */
319#define TABLESIZE	128
320static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
321#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
322
323/*
324 * During autoconfiguration or after a panic, a sleep will simply
325 * lower the priority briefly to allow interrupts, then return.
326 * The priority to be used (safepri) is machine-dependent, thus this
327 * value is initialized and maintained in the machine-dependent layers.
328 * This priority will typically be 0, or the lowest priority
329 * that is safe for use on the interrupt stack; it can be made
330 * higher to block network software interrupts after panics.
331 */
332int safepri;
333
334void
335sleepinit()
336{
337	int i;
338
339	for (i = 0; i < TABLESIZE; i++)
340		TAILQ_INIT(&slpque[i]);
341}
342
343/*
344 * General sleep call.  Suspends the current process until a wakeup is
345 * performed on the specified identifier.  The process will then be made
346 * runnable with the specified priority.  Sleeps at most timo/hz seconds
347 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
348 * before and after sleeping, else signals are not checked.  Returns 0 if
349 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
350 * signal needs to be delivered, ERESTART is returned if the current system
351 * call should be restarted if possible, and EINTR is returned if the system
352 * call should be interrupted by the signal (return EINTR).
353 */
354int
355tsleep(ident, priority, wmesg, timo)
356	void *ident;
357	int priority, timo;
358	const char *wmesg;
359{
360	struct proc *p = curproc;
361	int s, sig, catch = priority & PCATCH;
362	struct callout_handle thandle;
363
364#ifdef KTRACE
365	if (KTRPOINT(p, KTR_CSW))
366		ktrcsw(p->p_tracep, 1, 0);
367#endif
368	s = splhigh();
369	if (cold || panicstr) {
370		/*
371		 * After a panic, or during autoconfiguration,
372		 * just give interrupts a chance, then just return;
373		 * don't run any other procs or panic below,
374		 * in case this is the idle process and already asleep.
375		 */
376		splx(safepri);
377		splx(s);
378		return (0);
379	}
380#ifdef DIAGNOSTIC
381	if(p == NULL)
382		panic("tsleep1");
383	if (ident == NULL || p->p_stat != SRUN)
384		panic("tsleep");
385	/* XXX This is not exhaustive, just the most common case */
386	if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p))
387		panic("sleeping process already on another queue");
388#endif
389	p->p_wchan = ident;
390	p->p_wmesg = wmesg;
391	p->p_slptime = 0;
392	p->p_priority = priority & PRIMASK;
393	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
394	if (timo)
395		thandle = timeout(endtsleep, (void *)p, timo);
396	/*
397	 * We put ourselves on the sleep queue and start our timeout
398	 * before calling CURSIG, as we could stop there, and a wakeup
399	 * or a SIGCONT (or both) could occur while we were stopped.
400	 * A SIGCONT would cause us to be marked as SSLEEP
401	 * without resuming us, thus we must be ready for sleep
402	 * when CURSIG is called.  If the wakeup happens while we're
403	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
404	 */
405	if (catch) {
406		p->p_flag |= P_SINTR;
407		if ((sig = CURSIG(p))) {
408			if (p->p_wchan)
409				unsleep(p);
410			p->p_stat = SRUN;
411			goto resume;
412		}
413		if (p->p_wchan == 0) {
414			catch = 0;
415			goto resume;
416		}
417	} else
418		sig = 0;
419	p->p_stat = SSLEEP;
420	p->p_stats->p_ru.ru_nvcsw++;
421	mi_switch();
422resume:
423	curpriority = p->p_usrpri;
424	splx(s);
425	p->p_flag &= ~P_SINTR;
426	if (p->p_flag & P_TIMEOUT) {
427		p->p_flag &= ~P_TIMEOUT;
428		if (sig == 0) {
429#ifdef KTRACE
430			if (KTRPOINT(p, KTR_CSW))
431				ktrcsw(p->p_tracep, 0, 0);
432#endif
433			return (EWOULDBLOCK);
434		}
435	} else if (timo)
436		untimeout(endtsleep, (void *)p, thandle);
437	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
438#ifdef KTRACE
439		if (KTRPOINT(p, KTR_CSW))
440			ktrcsw(p->p_tracep, 0, 0);
441#endif
442		if (p->p_sigacts->ps_sigintr & sigmask(sig))
443			return (EINTR);
444		return (ERESTART);
445	}
446#ifdef KTRACE
447	if (KTRPOINT(p, KTR_CSW))
448		ktrcsw(p->p_tracep, 0, 0);
449#endif
450	return (0);
451}
452
453/*
454 * Implement timeout for tsleep.
455 * If process hasn't been awakened (wchan non-zero),
456 * set timeout flag and undo the sleep.  If proc
457 * is stopped, just unsleep so it will remain stopped.
458 */
459static void
460endtsleep(arg)
461	void *arg;
462{
463	register struct proc *p;
464	int s;
465
466	p = (struct proc *)arg;
467	s = splhigh();
468	if (p->p_wchan) {
469		if (p->p_stat == SSLEEP)
470			setrunnable(p);
471		else
472			unsleep(p);
473		p->p_flag |= P_TIMEOUT;
474	}
475	splx(s);
476}
477
478/*
479 * Remove a process from its wait queue
480 */
481void
482unsleep(p)
483	register struct proc *p;
484{
485	int s;
486
487	s = splhigh();
488	if (p->p_wchan) {
489		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
490		p->p_wchan = 0;
491	}
492	splx(s);
493}
494
495/*
496 * Make all processes sleeping on the specified identifier runnable.
497 */
498void
499wakeup(ident)
500	register void *ident;
501{
502	register struct slpquehead *qp;
503	register struct proc *p;
504	int s;
505
506	s = splhigh();
507	qp = &slpque[LOOKUP(ident)];
508restart:
509	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
510#ifdef DIAGNOSTIC
511		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
512			panic("wakeup");
513#endif
514		if (p->p_wchan == ident) {
515			TAILQ_REMOVE(qp, p, p_procq);
516			p->p_wchan = 0;
517			if (p->p_stat == SSLEEP) {
518				/* OPTIMIZED EXPANSION OF setrunnable(p); */
519				if (p->p_slptime > 1)
520					updatepri(p);
521				p->p_slptime = 0;
522				p->p_stat = SRUN;
523				if (p->p_flag & P_INMEM) {
524					setrunqueue(p);
525					maybe_resched(p);
526				} else {
527					p->p_flag |= P_SWAPINREQ;
528					wakeup((caddr_t)&proc0);
529				}
530				/* END INLINE EXPANSION */
531				goto restart;
532			}
533		}
534	}
535	splx(s);
536}
537
538/*
539 * Make a process sleeping on the specified identifier runnable.
540 * May wake more than one process if a target prcoess is currently
541 * swapped out.
542 */
543void
544wakeup_one(ident)
545	register void *ident;
546{
547	register struct slpquehead *qp;
548	register struct proc *p;
549	int s;
550
551	s = splhigh();
552	qp = &slpque[LOOKUP(ident)];
553
554	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
555#ifdef DIAGNOSTIC
556		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
557			panic("wakeup_one");
558#endif
559		if (p->p_wchan == ident) {
560			TAILQ_REMOVE(qp, p, p_procq);
561			p->p_wchan = 0;
562			if (p->p_stat == SSLEEP) {
563				/* OPTIMIZED EXPANSION OF setrunnable(p); */
564				if (p->p_slptime > 1)
565					updatepri(p);
566				p->p_slptime = 0;
567				p->p_stat = SRUN;
568				if (p->p_flag & P_INMEM) {
569					setrunqueue(p);
570					maybe_resched(p);
571					break;
572				} else {
573					p->p_flag |= P_SWAPINREQ;
574					wakeup((caddr_t)&proc0);
575				}
576				/* END INLINE EXPANSION */
577			}
578		}
579	}
580	splx(s);
581}
582
583/*
584 * The machine independent parts of mi_switch().
585 * Must be called at splstatclock() or higher.
586 */
587void
588mi_switch()
589{
590	register struct proc *p = curproc;	/* XXX */
591	register struct rlimit *rlim;
592	register long s, u;
593	int x;
594	struct timeval tv;
595
596	/*
597	 * XXX this spl is almost unnecessary.  It is partly to allow for
598	 * sloppy callers that don't do it (issignal() via CURSIG() is the
599	 * main offender).  It is partly to work around a bug in the i386
600	 * cpu_switch() (the ipl is not preserved).  We ran for years
601	 * without it.  I think there was only a interrupt latency problem.
602	 * The main caller, tsleep(), does an splx() a couple of instructions
603	 * after calling here.  The buggy caller, issignal(), usually calls
604	 * here at spl0() and sometimes returns at splhigh().  The process
605	 * then runs for a little too long at splhigh().  The ipl gets fixed
606	 * when the process returns to user mode (or earlier).
607	 *
608	 * It would probably be better to always call here at spl0(). Callers
609	 * are prepared to give up control to another process, so they must
610	 * be prepared to be interrupted.  The clock stuff here may not
611	 * actually need splstatclock().
612	 */
613	x = splstatclock();
614
615#ifdef SIMPLELOCK_DEBUG
616	if (p->p_simple_locks)
617		printf("sleep: holding simple lock\n");
618#endif
619	/*
620	 * Compute the amount of time during which the current
621	 * process was running, and add that to its total so far.
622	 */
623	microtime(&tv);
624	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
625	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
626	if (u < 0) {
627		u += 1000000;
628		s--;
629	} else if (u >= 1000000) {
630		u -= 1000000;
631		s++;
632	}
633#ifdef SMP
634	if (s < 0)
635		s = u = 0;
636#endif
637	p->p_rtime.tv_usec = u;
638	p->p_rtime.tv_sec = s;
639
640	/*
641	 * Check if the process exceeds its cpu resource allocation.
642	 * If over max, kill it.
643	 */
644	if (p->p_stat != SZOMB) {
645		rlim = &p->p_rlimit[RLIMIT_CPU];
646		if (s >= rlim->rlim_cur) {
647			if (s >= rlim->rlim_max)
648				killproc(p, "exceeded maximum CPU limit");
649			else {
650				psignal(p, SIGXCPU);
651				if (rlim->rlim_cur < rlim->rlim_max)
652					rlim->rlim_cur += 5;
653			}
654		}
655	}
656
657	/*
658	 * Pick a new current process and record its start time.
659	 */
660	cnt.v_swtch++;
661	cpu_switch(p);
662	microtime(&runtime);
663	splx(x);
664}
665
666/*
667 * Initialize the (doubly-linked) run queues
668 * to be empty.
669 */
670/* ARGSUSED*/
671static void
672rqinit(dummy)
673	void *dummy;
674{
675	register int i;
676
677	for (i = 0; i < NQS; i++) {
678		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
679		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
680		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
681	}
682}
683
684/*
685 * Change process state to be runnable,
686 * placing it on the run queue if it is in memory,
687 * and awakening the swapper if it isn't in memory.
688 */
689void
690setrunnable(p)
691	register struct proc *p;
692{
693	register int s;
694
695	s = splhigh();
696	switch (p->p_stat) {
697	case 0:
698	case SRUN:
699	case SZOMB:
700	default:
701		panic("setrunnable");
702	case SSTOP:
703	case SSLEEP:
704		unsleep(p);		/* e.g. when sending signals */
705		break;
706
707	case SIDL:
708		break;
709	}
710	p->p_stat = SRUN;
711	if (p->p_flag & P_INMEM)
712		setrunqueue(p);
713	splx(s);
714	if (p->p_slptime > 1)
715		updatepri(p);
716	p->p_slptime = 0;
717	if ((p->p_flag & P_INMEM) == 0) {
718		p->p_flag |= P_SWAPINREQ;
719		wakeup((caddr_t)&proc0);
720	}
721	else
722		maybe_resched(p);
723}
724
725/*
726 * Compute the priority of a process when running in user mode.
727 * Arrange to reschedule if the resulting priority is better
728 * than that of the current process.
729 */
730void
731resetpriority(p)
732	register struct proc *p;
733{
734	register unsigned int newpriority;
735
736	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
737		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
738		newpriority = min(newpriority, MAXPRI);
739		p->p_usrpri = newpriority;
740	}
741	maybe_resched(p);
742}
743
744/* ARGSUSED */
745static void sched_setup __P((void *dummy));
746static void
747sched_setup(dummy)
748	void *dummy;
749{
750	/* Kick off timeout driven events by calling first time. */
751	roundrobin(NULL);
752	schedcpu(NULL);
753}
754SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
755
756