kern_synch.c revision 3308
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.6 1994/10/02 04:45:50 davidg Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/buf.h>
47#include <sys/signalvar.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <vm/vm.h>
51#ifdef KTRACE
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56
57u_char	curpriority;		/* usrpri of curproc */
58int	lbolt;			/* once a second sleep address */
59
60/*
61 * Force switch among equal priority processes every 100ms.
62 */
63/* ARGSUSED */
64void
65roundrobin(arg)
66	void *arg;
67{
68
69	need_resched();
70	timeout(roundrobin, NULL, hz / 10);
71}
72
73/*
74 * Constants for digital decay and forget:
75 *	90% of (p_estcpu) usage in 5 * loadav time
76 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
77 *          Note that, as ps(1) mentions, this can let percentages
78 *          total over 100% (I've seen 137.9% for 3 processes).
79 *
80 * Note that hardclock updates p_estcpu and p_cpticks independently.
81 *
82 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
83 * That is, the system wants to compute a value of decay such
84 * that the following for loop:
85 * 	for (i = 0; i < (5 * loadavg); i++)
86 * 		p_estcpu *= decay;
87 * will compute
88 * 	p_estcpu *= 0.1;
89 * for all values of loadavg:
90 *
91 * Mathematically this loop can be expressed by saying:
92 * 	decay ** (5 * loadavg) ~= .1
93 *
94 * The system computes decay as:
95 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
96 *
97 * We wish to prove that the system's computation of decay
98 * will always fulfill the equation:
99 * 	decay ** (5 * loadavg) ~= .1
100 *
101 * If we compute b as:
102 * 	b = 2 * loadavg
103 * then
104 * 	decay = b / (b + 1)
105 *
106 * We now need to prove two things:
107 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
108 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
109 *
110 * Facts:
111 *         For x close to zero, exp(x) =~ 1 + x, since
112 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
113 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
114 *         For x close to zero, ln(1+x) =~ x, since
115 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
116 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
117 *         ln(.1) =~ -2.30
118 *
119 * Proof of (1):
120 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
121 *	solving for factor,
122 *      ln(factor) =~ (-2.30/5*loadav), or
123 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
124 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
125 *
126 * Proof of (2):
127 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
128 *	solving for power,
129 *      power*ln(b/(b+1)) =~ -2.30, or
130 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
131 *
132 * Actual power values for the implemented algorithm are as follows:
133 *      loadav: 1       2       3       4
134 *      power:  5.68    10.32   14.94   19.55
135 */
136
137/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
138#define	loadfactor(loadav)	(2 * (loadav))
139#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
140
141/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
142fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
143
144/*
145 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
146 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
147 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
148 *
149 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
150 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
151 *
152 * If you dont want to bother with the faster/more-accurate formula, you
153 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
154 * (more general) method of calculating the %age of CPU used by a process.
155 */
156#define	CCPU_SHIFT	11
157
158/*
159 * Recompute process priorities, every hz ticks.
160 */
161/* ARGSUSED */
162void
163schedcpu(arg)
164	void *arg;
165{
166	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
167	register struct proc *p;
168	register int s;
169	register unsigned int newcpu;
170
171	wakeup((caddr_t)&lbolt);
172	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
173		/*
174		 * Increment time in/out of memory and sleep time
175		 * (if sleeping).  We ignore overflow; with 16-bit int's
176		 * (remember them?) overflow takes 45 days.
177		 */
178		p->p_swtime++;
179		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
180			p->p_slptime++;
181		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
182		/*
183		 * If the process has slept the entire second,
184		 * stop recalculating its priority until it wakes up.
185		 */
186		if (p->p_slptime > 1)
187			continue;
188		s = splstatclock();	/* prevent state changes */
189		/*
190		 * p_pctcpu is only for ps.
191		 */
192#if	(FSHIFT >= CCPU_SHIFT)
193		p->p_pctcpu += (hz == 100)?
194			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
195                	100 * (((fixpt_t) p->p_cpticks)
196				<< (FSHIFT - CCPU_SHIFT)) / hz;
197#else
198		p->p_pctcpu += ((FSCALE - ccpu) *
199			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
200#endif
201		p->p_cpticks = 0;
202		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
203		p->p_estcpu = min(newcpu, UCHAR_MAX);
204		resetpriority(p);
205		if (p->p_priority >= PUSER) {
206#define	PPQ	(128 / NQS)		/* priorities per queue */
207			if ((p != curproc) &&
208			    p->p_stat == SRUN &&
209			    (p->p_flag & P_INMEM) &&
210			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
211				remrq(p);
212				p->p_priority = p->p_usrpri;
213				setrunqueue(p);
214			} else
215				p->p_priority = p->p_usrpri;
216		}
217		splx(s);
218	}
219	vmmeter();
220	if (bclnlist != NULL)
221		wakeup((caddr_t)pageproc);
222	timeout(schedcpu, (void *)0, hz);
223}
224
225/*
226 * Recalculate the priority of a process after it has slept for a while.
227 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
228 * least six times the loadfactor will decay p_estcpu to zero.
229 */
230void
231updatepri(p)
232	register struct proc *p;
233{
234	register unsigned int newcpu = p->p_estcpu;
235	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
236
237	if (p->p_slptime > 5 * loadfac)
238		p->p_estcpu = 0;
239	else {
240		p->p_slptime--;	/* the first time was done in schedcpu */
241		while (newcpu && --p->p_slptime)
242			newcpu = (int) decay_cpu(loadfac, newcpu);
243		p->p_estcpu = min(newcpu, UCHAR_MAX);
244	}
245	resetpriority(p);
246}
247
248/*
249 * We're only looking at 7 bits of the address; everything is
250 * aligned to 4, lots of things are aligned to greater powers
251 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
252 */
253#define TABLESIZE	128
254#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
255struct slpque {
256	struct proc *sq_head;
257	struct proc **sq_tailp;
258} slpque[TABLESIZE];
259
260/*
261 * During autoconfiguration or after a panic, a sleep will simply
262 * lower the priority briefly to allow interrupts, then return.
263 * The priority to be used (safepri) is machine-dependent, thus this
264 * value is initialized and maintained in the machine-dependent layers.
265 * This priority will typically be 0, or the lowest priority
266 * that is safe for use on the interrupt stack; it can be made
267 * higher to block network software interrupts after panics.
268 */
269int safepri;
270
271/*
272 * General sleep call.  Suspends the current process until a wakeup is
273 * performed on the specified identifier.  The process will then be made
274 * runnable with the specified priority.  Sleeps at most timo/hz seconds
275 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
276 * before and after sleeping, else signals are not checked.  Returns 0 if
277 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
278 * signal needs to be delivered, ERESTART is returned if the current system
279 * call should be restarted if possible, and EINTR is returned if the system
280 * call should be interrupted by the signal (return EINTR).
281 */
282int
283tsleep(ident, priority, wmesg, timo)
284	void *ident;
285	int priority, timo;
286	char *wmesg;
287{
288	register struct proc *p = curproc;
289	register struct slpque *qp;
290	register s;
291	int sig, catch = priority & PCATCH;
292	extern int cold;
293	void endtsleep __P((void *));
294
295#ifdef KTRACE
296	if (KTRPOINT(p, KTR_CSW))
297		ktrcsw(p->p_tracep, 1, 0);
298#endif
299	s = splhigh();
300	if (cold || panicstr) {
301		/*
302		 * After a panic, or during autoconfiguration,
303		 * just give interrupts a chance, then just return;
304		 * don't run any other procs or panic below,
305		 * in case this is the idle process and already asleep.
306		 */
307		splx(safepri);
308		splx(s);
309		return (0);
310	}
311#ifdef DIAGNOSTIC
312	if (ident == NULL || p->p_stat != SRUN || p->p_back)
313		panic("tsleep");
314#endif
315	p->p_wchan = ident;
316	p->p_wmesg = wmesg;
317	p->p_slptime = 0;
318	p->p_priority = priority & PRIMASK;
319	qp = &slpque[LOOKUP(ident)];
320	if (qp->sq_head == 0)
321		qp->sq_head = p;
322	else
323		*qp->sq_tailp = p;
324	*(qp->sq_tailp = &p->p_forw) = 0;
325	if (timo)
326		timeout(endtsleep, (void *)p, timo);
327	/*
328	 * We put ourselves on the sleep queue and start our timeout
329	 * before calling CURSIG, as we could stop there, and a wakeup
330	 * or a SIGCONT (or both) could occur while we were stopped.
331	 * A SIGCONT would cause us to be marked as SSLEEP
332	 * without resuming us, thus we must be ready for sleep
333	 * when CURSIG is called.  If the wakeup happens while we're
334	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
335	 */
336	if (catch) {
337		p->p_flag |= P_SINTR;
338		if ((sig = CURSIG(p))) {
339			if (p->p_wchan)
340				unsleep(p);
341			p->p_stat = SRUN;
342			goto resume;
343		}
344		if (p->p_wchan == 0) {
345			catch = 0;
346			goto resume;
347		}
348	} else
349		sig = 0;
350	p->p_stat = SSLEEP;
351	p->p_stats->p_ru.ru_nvcsw++;
352	mi_switch();
353resume:
354	curpriority = p->p_usrpri;
355	splx(s);
356	p->p_flag &= ~P_SINTR;
357	if (p->p_flag & P_TIMEOUT) {
358		p->p_flag &= ~P_TIMEOUT;
359		if (sig == 0) {
360#ifdef KTRACE
361			if (KTRPOINT(p, KTR_CSW))
362				ktrcsw(p->p_tracep, 0, 0);
363#endif
364			return (EWOULDBLOCK);
365		}
366	} else if (timo)
367		untimeout(endtsleep, (void *)p);
368	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
369#ifdef KTRACE
370		if (KTRPOINT(p, KTR_CSW))
371			ktrcsw(p->p_tracep, 0, 0);
372#endif
373		if (p->p_sigacts->ps_sigintr & sigmask(sig))
374			return (EINTR);
375		return (ERESTART);
376	}
377#ifdef KTRACE
378	if (KTRPOINT(p, KTR_CSW))
379		ktrcsw(p->p_tracep, 0, 0);
380#endif
381	return (0);
382}
383
384/*
385 * Implement timeout for tsleep.
386 * If process hasn't been awakened (wchan non-zero),
387 * set timeout flag and undo the sleep.  If proc
388 * is stopped, just unsleep so it will remain stopped.
389 */
390void
391endtsleep(arg)
392	void *arg;
393{
394	register struct proc *p;
395	int s;
396
397	p = (struct proc *)arg;
398	s = splhigh();
399	if (p->p_wchan) {
400		if (p->p_stat == SSLEEP)
401			setrunnable(p);
402		else
403			unsleep(p);
404		p->p_flag |= P_TIMEOUT;
405	}
406	splx(s);
407}
408
409/*
410 * Short-term, non-interruptable sleep.
411 */
412void
413sleep(ident, priority)
414	void *ident;
415	int priority;
416{
417	register struct proc *p = curproc;
418	register struct slpque *qp;
419	register s;
420	extern int cold;
421
422#ifdef DIAGNOSTIC
423	if (priority > PZERO) {
424		printf("sleep called with priority %d > PZERO, wchan: %p\n",
425		    priority, ident);
426		panic("old sleep");
427	}
428#endif
429	s = splhigh();
430	if (cold || panicstr) {
431		/*
432		 * After a panic, or during autoconfiguration,
433		 * just give interrupts a chance, then just return;
434		 * don't run any other procs or panic below,
435		 * in case this is the idle process and already asleep.
436		 */
437		splx(safepri);
438		splx(s);
439		return;
440	}
441#ifdef DIAGNOSTIC
442	if (ident == NULL || p->p_stat != SRUN || p->p_back)
443		panic("sleep");
444#endif
445	p->p_wchan = ident;
446	p->p_wmesg = NULL;
447	p->p_slptime = 0;
448	p->p_priority = priority;
449	qp = &slpque[LOOKUP(ident)];
450	if (qp->sq_head == 0)
451		qp->sq_head = p;
452	else
453		*qp->sq_tailp = p;
454	*(qp->sq_tailp = &p->p_forw) = 0;
455	p->p_stat = SSLEEP;
456	p->p_stats->p_ru.ru_nvcsw++;
457#ifdef KTRACE
458	if (KTRPOINT(p, KTR_CSW))
459		ktrcsw(p->p_tracep, 1, 0);
460#endif
461	mi_switch();
462#ifdef KTRACE
463	if (KTRPOINT(p, KTR_CSW))
464		ktrcsw(p->p_tracep, 0, 0);
465#endif
466	curpriority = p->p_usrpri;
467	splx(s);
468}
469
470/*
471 * Remove a process from its wait queue
472 */
473void
474unsleep(p)
475	register struct proc *p;
476{
477	register struct slpque *qp;
478	register struct proc **hp;
479	int s;
480
481	s = splhigh();
482	if (p->p_wchan) {
483		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
484		while (*hp != p)
485			hp = &(*hp)->p_forw;
486		*hp = p->p_forw;
487		if (qp->sq_tailp == &p->p_forw)
488			qp->sq_tailp = hp;
489		p->p_wchan = 0;
490	}
491	splx(s);
492}
493
494/*
495 * Make all processes sleeping on the specified identifier runnable.
496 */
497void
498wakeup(ident)
499	register void *ident;
500{
501	register struct slpque *qp;
502	register struct proc *p, **q;
503	int s;
504
505	s = splhigh();
506	qp = &slpque[LOOKUP(ident)];
507restart:
508	for (q = &qp->sq_head; *q; ) {
509		p = *q;
510#ifdef DIAGNOSTIC
511		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
512			panic("wakeup");
513#endif
514		if (p->p_wchan == ident) {
515			p->p_wchan = 0;
516			*q = p->p_forw;
517			if (qp->sq_tailp == &p->p_forw)
518				qp->sq_tailp = q;
519			if (p->p_stat == SSLEEP) {
520				/* OPTIMIZED EXPANSION OF setrunnable(p); */
521				if (p->p_slptime > 1)
522					updatepri(p);
523				p->p_slptime = 0;
524				p->p_stat = SRUN;
525				if (p->p_flag & P_INMEM)
526					setrunqueue(p);
527				/*
528				 * Since curpriority is a user priority,
529				 * p->p_priority is always better than
530				 * curpriority.
531				 */
532				if ((p->p_flag & P_INMEM) == 0)
533					wakeup((caddr_t)&proc0);
534				else
535					need_resched();
536				/* END INLINE EXPANSION */
537				goto restart;
538			}
539		} else
540			q = &p->p_forw;
541	}
542	splx(s);
543}
544
545/*
546 * The machine independent parts of mi_switch().
547 * Must be called at splstatclock() or higher.
548 */
549void
550mi_switch()
551{
552	register struct proc *p = curproc;	/* XXX */
553	register struct rlimit *rlim;
554	register long s, u;
555	struct timeval tv;
556
557	/*
558	 * Compute the amount of time during which the current
559	 * process was running, and add that to its total so far.
560	 */
561	microtime(&tv);
562	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
563	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
564	if (u < 0) {
565		u += 1000000;
566		s--;
567	} else if (u >= 1000000) {
568		u -= 1000000;
569		s++;
570	}
571	p->p_rtime.tv_usec = u;
572	p->p_rtime.tv_sec = s;
573
574	/*
575	 * Check if the process exceeds its cpu resource allocation.
576	 * If over max, kill it.  In any case, if it has run for more
577	 * than 10 minutes, reduce priority to give others a chance.
578	 */
579	rlim = &p->p_rlimit[RLIMIT_CPU];
580	if (s >= rlim->rlim_cur) {
581		if (s >= rlim->rlim_max)
582			psignal(p, SIGKILL);
583		else {
584			psignal(p, SIGXCPU);
585			if (rlim->rlim_cur < rlim->rlim_max)
586				rlim->rlim_cur += 5;
587		}
588	}
589	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
590		p->p_nice = NZERO + 4;
591		resetpriority(p);
592	}
593
594	/*
595	 * Pick a new current process and record its start time.
596	 */
597	cnt.v_swtch++;
598	cpu_switch(p);
599	microtime(&runtime);
600}
601
602/*
603 * Initialize the (doubly-linked) run queues
604 * to be empty.
605 */
606void
607rqinit()
608{
609	register int i;
610
611	for (i = 0; i < NQS; i++) {
612		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
613		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
614		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
615	}
616}
617
618/*
619 * Change process state to be runnable,
620 * placing it on the run queue if it is in memory,
621 * and awakening the swapper if it isn't in memory.
622 */
623void
624setrunnable(p)
625	register struct proc *p;
626{
627	register int s;
628
629	s = splhigh();
630	switch (p->p_stat) {
631	case 0:
632	case SRUN:
633	case SZOMB:
634	default:
635		panic("setrunnable");
636	case SSTOP:
637	case SSLEEP:
638		unsleep(p);		/* e.g. when sending signals */
639		break;
640
641	case SIDL:
642		break;
643	}
644	p->p_stat = SRUN;
645	if (p->p_flag & P_INMEM)
646		setrunqueue(p);
647	splx(s);
648	if (p->p_slptime > 1)
649		updatepri(p);
650	p->p_slptime = 0;
651	if ((p->p_flag & P_INMEM) == 0)
652		wakeup((caddr_t)&proc0);
653	else if (p->p_priority < curpriority)
654		need_resched();
655}
656
657/*
658 * Compute the priority of a process when running in user mode.
659 * Arrange to reschedule if the resulting priority is better
660 * than that of the current process.
661 */
662void
663resetpriority(p)
664	register struct proc *p;
665{
666	register unsigned int newpriority;
667
668	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
669		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
670		newpriority = min(newpriority, MAXPRI);
671		p->p_usrpri = newpriority;
672		if (newpriority < curpriority)
673			need_resched();
674	} else {
675		need_resched();
676	}
677}
678