kern_synch.c revision 315386
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_synch.c 315386 2017-03-16 07:10:08Z mjg $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/signalvar.h>
56#include <sys/sleepqueue.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/uio.h>
64#include <sys/ktrace.h>
65#endif
66
67#include <machine/cpu.h>
68
69#define	KTDSTATE(td)							\
70	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75
76static void synch_setup(void *dummy);
77SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78    NULL);
79
80int	hogticks;
81static uint8_t pause_wchan[MAXCPU];
82
83static struct callout loadav_callout;
84
85struct loadavg averunnable =
86	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87/*
88 * Constants for averages over 1, 5, and 15 minutes
89 * when sampling at 5 second intervals.
90 */
91static fixpt_t cexp[3] = {
92	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95};
96
97/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99
100static void	loadav(void *arg);
101
102SDT_PROVIDER_DECLARE(sched);
103SDT_PROBE_DEFINE(sched, , , preempt);
104
105static void
106sleepinit(void *unused)
107{
108
109	hogticks = (hz / 10) * 2;	/* Default only. */
110	init_sleepqueues();
111}
112
113/*
114 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115 * it is available.
116 */
117SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118
119/*
120 * General sleep call.  Suspends the current thread until a wakeup is
121 * performed on the specified identifier.  The thread will then be made
122 * runnable with the specified priority.  Sleeps at most sbt units of time
123 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126 * signal becomes pending, ERESTART is returned if the current system
127 * call should be restarted if possible, and EINTR is returned if the system
128 * call should be interrupted by the signal (return EINTR).
129 *
130 * The lock argument is unlocked before the caller is suspended, and
131 * re-locked before _sleep() returns.  If priority includes the PDROP
132 * flag the lock is not re-locked before returning.
133 */
134int
135_sleep(void *ident, struct lock_object *lock, int priority,
136    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137{
138	struct thread *td;
139	struct proc *p;
140	struct lock_class *class;
141	uintptr_t lock_state;
142	int catch, pri, rval, sleepq_flags;
143	WITNESS_SAVE_DECL(lock_witness);
144
145	td = curthread;
146	p = td->td_proc;
147#ifdef KTRACE
148	if (KTRPOINT(td, KTR_CSW))
149		ktrcsw(1, 0, wmesg);
150#endif
151	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152	    "Sleeping on \"%s\"", wmesg);
153	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154	    ("sleeping without a lock"));
155	KASSERT(p != NULL, ("msleep1"));
156	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157	if (priority & PDROP)
158		KASSERT(lock != NULL && lock != &Giant.lock_object,
159		    ("PDROP requires a non-Giant lock"));
160	if (lock != NULL)
161		class = LOCK_CLASS(lock);
162	else
163		class = NULL;
164
165	if (SCHEDULER_STOPPED_TD(td)) {
166		if (lock != NULL && priority & PDROP)
167			class->lc_unlock(lock);
168		return (0);
169	}
170	catch = priority & PCATCH;
171	pri = priority & PRIMASK;
172
173	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
174
175	if ((uint8_t *)ident >= &pause_wchan[0] &&
176	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
177		sleepq_flags = SLEEPQ_PAUSE;
178	else
179		sleepq_flags = SLEEPQ_SLEEP;
180	if (catch)
181		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
182
183	sleepq_lock(ident);
184	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
185	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
186
187	if (lock == &Giant.lock_object)
188		mtx_assert(&Giant, MA_OWNED);
189	DROP_GIANT();
190	if (lock != NULL && lock != &Giant.lock_object &&
191	    !(class->lc_flags & LC_SLEEPABLE)) {
192		WITNESS_SAVE(lock, lock_witness);
193		lock_state = class->lc_unlock(lock);
194	} else
195		/* GCC needs to follow the Yellow Brick Road */
196		lock_state = -1;
197
198	/*
199	 * We put ourselves on the sleep queue and start our timeout
200	 * before calling thread_suspend_check, as we could stop there,
201	 * and a wakeup or a SIGCONT (or both) could occur while we were
202	 * stopped without resuming us.  Thus, we must be ready for sleep
203	 * when cursig() is called.  If the wakeup happens while we're
204	 * stopped, then td will no longer be on a sleep queue upon
205	 * return from cursig().
206	 */
207	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
208	if (sbt != 0)
209		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
210	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
211		sleepq_release(ident);
212		WITNESS_SAVE(lock, lock_witness);
213		lock_state = class->lc_unlock(lock);
214		sleepq_lock(ident);
215	}
216	if (sbt != 0 && catch)
217		rval = sleepq_timedwait_sig(ident, pri);
218	else if (sbt != 0)
219		rval = sleepq_timedwait(ident, pri);
220	else if (catch)
221		rval = sleepq_wait_sig(ident, pri);
222	else {
223		sleepq_wait(ident, pri);
224		rval = 0;
225	}
226#ifdef KTRACE
227	if (KTRPOINT(td, KTR_CSW))
228		ktrcsw(0, 0, wmesg);
229#endif
230	PICKUP_GIANT();
231	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
232		class->lc_lock(lock, lock_state);
233		WITNESS_RESTORE(lock, lock_witness);
234	}
235	return (rval);
236}
237
238int
239msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
240    sbintime_t sbt, sbintime_t pr, int flags)
241{
242	struct thread *td;
243	struct proc *p;
244	int rval;
245	WITNESS_SAVE_DECL(mtx);
246
247	td = curthread;
248	p = td->td_proc;
249	KASSERT(mtx != NULL, ("sleeping without a mutex"));
250	KASSERT(p != NULL, ("msleep1"));
251	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
252
253	if (SCHEDULER_STOPPED_TD(td))
254		return (0);
255
256	sleepq_lock(ident);
257	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
258	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
259
260	DROP_GIANT();
261	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
262	WITNESS_SAVE(&mtx->lock_object, mtx);
263	mtx_unlock_spin(mtx);
264
265	/*
266	 * We put ourselves on the sleep queue and start our timeout.
267	 */
268	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
269	if (sbt != 0)
270		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
271
272	/*
273	 * Can't call ktrace with any spin locks held so it can lock the
274	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
275	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
276	 * we handle those requests.  This is safe since we have placed our
277	 * thread on the sleep queue already.
278	 */
279#ifdef KTRACE
280	if (KTRPOINT(td, KTR_CSW)) {
281		sleepq_release(ident);
282		ktrcsw(1, 0, wmesg);
283		sleepq_lock(ident);
284	}
285#endif
286#ifdef WITNESS
287	sleepq_release(ident);
288	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
289	    wmesg);
290	sleepq_lock(ident);
291#endif
292	if (sbt != 0)
293		rval = sleepq_timedwait(ident, 0);
294	else {
295		sleepq_wait(ident, 0);
296		rval = 0;
297	}
298#ifdef KTRACE
299	if (KTRPOINT(td, KTR_CSW))
300		ktrcsw(0, 0, wmesg);
301#endif
302	PICKUP_GIANT();
303	mtx_lock_spin(mtx);
304	WITNESS_RESTORE(&mtx->lock_object, mtx);
305	return (rval);
306}
307
308/*
309 * pause() delays the calling thread by the given number of system ticks.
310 * During cold bootup, pause() uses the DELAY() function instead of
311 * the tsleep() function to do the waiting. The "timo" argument must be
312 * greater than or equal to zero. A "timo" value of zero is equivalent
313 * to a "timo" value of one.
314 */
315int
316pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
317{
318	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
319
320	/* silently convert invalid timeouts */
321	if (sbt == 0)
322		sbt = tick_sbt;
323
324	if ((cold && curthread == &thread0) || kdb_active ||
325	    SCHEDULER_STOPPED()) {
326		/*
327		 * We delay one second at a time to avoid overflowing the
328		 * system specific DELAY() function(s):
329		 */
330		while (sbt >= SBT_1S) {
331			DELAY(1000000);
332			sbt -= SBT_1S;
333		}
334		/* Do the delay remainder, if any */
335		sbt = howmany(sbt, SBT_1US);
336		if (sbt > 0)
337			DELAY(sbt);
338		return (0);
339	}
340	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
341}
342
343/*
344 * Make all threads sleeping on the specified identifier runnable.
345 */
346void
347wakeup(void *ident)
348{
349	int wakeup_swapper;
350
351	sleepq_lock(ident);
352	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
353	sleepq_release(ident);
354	if (wakeup_swapper) {
355		KASSERT(ident != &proc0,
356		    ("wakeup and wakeup_swapper and proc0"));
357		kick_proc0();
358	}
359}
360
361/*
362 * Make a thread sleeping on the specified identifier runnable.
363 * May wake more than one thread if a target thread is currently
364 * swapped out.
365 */
366void
367wakeup_one(void *ident)
368{
369	int wakeup_swapper;
370
371	sleepq_lock(ident);
372	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
373	sleepq_release(ident);
374	if (wakeup_swapper)
375		kick_proc0();
376}
377
378static void
379kdb_switch(void)
380{
381	thread_unlock(curthread);
382	kdb_backtrace();
383	kdb_reenter();
384	panic("%s: did not reenter debugger", __func__);
385}
386
387/*
388 * The machine independent parts of context switching.
389 */
390void
391mi_switch(int flags, struct thread *newtd)
392{
393	uint64_t runtime, new_switchtime;
394	struct thread *td;
395
396	td = curthread;			/* XXX */
397	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
398	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
399#ifdef INVARIANTS
400	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
401		mtx_assert(&Giant, MA_NOTOWNED);
402#endif
403	KASSERT(td->td_critnest == 1 || panicstr,
404	    ("mi_switch: switch in a critical section"));
405	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
406	    ("mi_switch: switch must be voluntary or involuntary"));
407	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
408
409	/*
410	 * Don't perform context switches from the debugger.
411	 */
412	if (kdb_active)
413		kdb_switch();
414	if (SCHEDULER_STOPPED_TD(td))
415		return;
416	if (flags & SW_VOL) {
417		td->td_ru.ru_nvcsw++;
418		td->td_swvoltick = ticks;
419	} else {
420		td->td_ru.ru_nivcsw++;
421		td->td_swinvoltick = ticks;
422	}
423#ifdef SCHED_STATS
424	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
425#endif
426	/*
427	 * Compute the amount of time during which the current
428	 * thread was running, and add that to its total so far.
429	 */
430	new_switchtime = cpu_ticks();
431	runtime = new_switchtime - PCPU_GET(switchtime);
432	td->td_runtime += runtime;
433	td->td_incruntime += runtime;
434	PCPU_SET(switchtime, new_switchtime);
435	td->td_generation++;	/* bump preempt-detect counter */
436	PCPU_INC(cnt.v_swtch);
437	PCPU_SET(switchticks, ticks);
438	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
439	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
440#if (KTR_COMPILE & KTR_SCHED) != 0
441	if (TD_IS_IDLETHREAD(td))
442		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
443		    "prio:%d", td->td_priority);
444	else
445		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
446		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
447		    "lockname:\"%s\"", td->td_lockname);
448#endif
449	SDT_PROBE0(sched, , , preempt);
450	sched_switch(td, newtd, flags);
451	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
452	    "prio:%d", td->td_priority);
453
454	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
455	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
456
457	/*
458	 * If the last thread was exiting, finish cleaning it up.
459	 */
460	if ((td = PCPU_GET(deadthread))) {
461		PCPU_SET(deadthread, NULL);
462		thread_stash(td);
463	}
464}
465
466/*
467 * Change thread state to be runnable, placing it on the run queue if
468 * it is in memory.  If it is swapped out, return true so our caller
469 * will know to awaken the swapper.
470 */
471int
472setrunnable(struct thread *td)
473{
474
475	THREAD_LOCK_ASSERT(td, MA_OWNED);
476	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
477	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
478	switch (td->td_state) {
479	case TDS_RUNNING:
480	case TDS_RUNQ:
481		return (0);
482	case TDS_INHIBITED:
483		/*
484		 * If we are only inhibited because we are swapped out
485		 * then arange to swap in this process. Otherwise just return.
486		 */
487		if (td->td_inhibitors != TDI_SWAPPED)
488			return (0);
489		/* FALLTHROUGH */
490	case TDS_CAN_RUN:
491		break;
492	default:
493		printf("state is 0x%x", td->td_state);
494		panic("setrunnable(2)");
495	}
496	if ((td->td_flags & TDF_INMEM) == 0) {
497		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
498			td->td_flags |= TDF_SWAPINREQ;
499			return (1);
500		}
501	} else
502		sched_wakeup(td);
503	return (0);
504}
505
506/*
507 * Compute a tenex style load average of a quantity on
508 * 1, 5 and 15 minute intervals.
509 */
510static void
511loadav(void *arg)
512{
513	int i, nrun;
514	struct loadavg *avg;
515
516	nrun = sched_load();
517	avg = &averunnable;
518
519	for (i = 0; i < 3; i++)
520		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
521		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
522
523	/*
524	 * Schedule the next update to occur after 5 seconds, but add a
525	 * random variation to avoid synchronisation with processes that
526	 * run at regular intervals.
527	 */
528	callout_reset_sbt(&loadav_callout,
529	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
530	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
531}
532
533/* ARGSUSED */
534static void
535synch_setup(void *dummy)
536{
537	callout_init(&loadav_callout, 1);
538
539	/* Kick off timeout driven events by calling first time. */
540	loadav(NULL);
541}
542
543int
544should_yield(void)
545{
546
547	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
548}
549
550void
551maybe_yield(void)
552{
553
554	if (should_yield())
555		kern_yield(PRI_USER);
556}
557
558void
559kern_yield(int prio)
560{
561	struct thread *td;
562
563	td = curthread;
564	DROP_GIANT();
565	thread_lock(td);
566	if (prio == PRI_USER)
567		prio = td->td_user_pri;
568	if (prio >= 0)
569		sched_prio(td, prio);
570	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
571	thread_unlock(td);
572	PICKUP_GIANT();
573}
574
575/*
576 * General purpose yield system call.
577 */
578int
579sys_yield(struct thread *td, struct yield_args *uap)
580{
581
582	thread_lock(td);
583	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
584		sched_prio(td, PRI_MAX_TIMESHARE);
585	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
586	thread_unlock(td);
587	td->td_retval[0] = 0;
588	return (0);
589}
590