kern_synch.c revision 308468
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_synch.c 308468 2016-11-09 16:46:57Z kib $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/signalvar.h>
56#include <sys/sleepqueue.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/uio.h>
64#include <sys/ktrace.h>
65#endif
66
67#include <machine/cpu.h>
68
69#define	KTDSTATE(td)							\
70	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75
76static void synch_setup(void *dummy);
77SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78    NULL);
79
80int	hogticks;
81static uint8_t pause_wchan[MAXCPU];
82
83static struct callout loadav_callout;
84
85struct loadavg averunnable =
86	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87/*
88 * Constants for averages over 1, 5, and 15 minutes
89 * when sampling at 5 second intervals.
90 */
91static fixpt_t cexp[3] = {
92	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95};
96
97/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99
100static void	loadav(void *arg);
101
102SDT_PROVIDER_DECLARE(sched);
103SDT_PROBE_DEFINE(sched, , , preempt);
104
105static void
106sleepinit(void *unused)
107{
108
109	hogticks = (hz / 10) * 2;	/* Default only. */
110	init_sleepqueues();
111}
112
113/*
114 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115 * it is available.
116 */
117SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118
119/*
120 * General sleep call.  Suspends the current thread until a wakeup is
121 * performed on the specified identifier.  The thread will then be made
122 * runnable with the specified priority.  Sleeps at most sbt units of time
123 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126 * signal becomes pending, ERESTART is returned if the current system
127 * call should be restarted if possible, and EINTR is returned if the system
128 * call should be interrupted by the signal (return EINTR).
129 *
130 * The lock argument is unlocked before the caller is suspended, and
131 * re-locked before _sleep() returns.  If priority includes the PDROP
132 * flag the lock is not re-locked before returning.
133 */
134int
135_sleep(void *ident, struct lock_object *lock, int priority,
136    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137{
138	struct thread *td;
139	struct proc *p;
140	struct lock_class *class;
141	uintptr_t lock_state;
142	int catch, pri, rval, sleepq_flags;
143	WITNESS_SAVE_DECL(lock_witness);
144
145	td = curthread;
146	p = td->td_proc;
147#ifdef KTRACE
148	if (KTRPOINT(td, KTR_CSW))
149		ktrcsw(1, 0, wmesg);
150#endif
151	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152	    "Sleeping on \"%s\"", wmesg);
153	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154	    ("sleeping without a lock"));
155	KASSERT(p != NULL, ("msleep1"));
156	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157	if (priority & PDROP)
158		KASSERT(lock != NULL && lock != &Giant.lock_object,
159		    ("PDROP requires a non-Giant lock"));
160	if (lock != NULL)
161		class = LOCK_CLASS(lock);
162	else
163		class = NULL;
164
165	if (SCHEDULER_STOPPED()) {
166		if (lock != NULL && priority & PDROP)
167			class->lc_unlock(lock);
168		return (0);
169	}
170	catch = priority & PCATCH;
171	pri = priority & PRIMASK;
172
173	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
174
175	if ((uint8_t *)ident >= &pause_wchan[0] &&
176	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
177		sleepq_flags = SLEEPQ_PAUSE;
178	else
179		sleepq_flags = SLEEPQ_SLEEP;
180	if (catch)
181		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
182
183	sleepq_lock(ident);
184	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
185	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
186
187	if (lock == &Giant.lock_object)
188		mtx_assert(&Giant, MA_OWNED);
189	DROP_GIANT();
190	if (lock != NULL && lock != &Giant.lock_object &&
191	    !(class->lc_flags & LC_SLEEPABLE)) {
192		WITNESS_SAVE(lock, lock_witness);
193		lock_state = class->lc_unlock(lock);
194	} else
195		/* GCC needs to follow the Yellow Brick Road */
196		lock_state = -1;
197
198	/*
199	 * We put ourselves on the sleep queue and start our timeout
200	 * before calling thread_suspend_check, as we could stop there,
201	 * and a wakeup or a SIGCONT (or both) could occur while we were
202	 * stopped without resuming us.  Thus, we must be ready for sleep
203	 * when cursig() is called.  If the wakeup happens while we're
204	 * stopped, then td will no longer be on a sleep queue upon
205	 * return from cursig().
206	 */
207	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
208	if (sbt != 0)
209		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
210	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
211		sleepq_release(ident);
212		WITNESS_SAVE(lock, lock_witness);
213		lock_state = class->lc_unlock(lock);
214		sleepq_lock(ident);
215	}
216	if (sbt != 0 && catch)
217		rval = sleepq_timedwait_sig(ident, pri);
218	else if (sbt != 0)
219		rval = sleepq_timedwait(ident, pri);
220	else if (catch)
221		rval = sleepq_wait_sig(ident, pri);
222	else {
223		sleepq_wait(ident, pri);
224		rval = 0;
225	}
226#ifdef KTRACE
227	if (KTRPOINT(td, KTR_CSW))
228		ktrcsw(0, 0, wmesg);
229#endif
230	PICKUP_GIANT();
231	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
232		class->lc_lock(lock, lock_state);
233		WITNESS_RESTORE(lock, lock_witness);
234	}
235	return (rval);
236}
237
238int
239msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
240    sbintime_t sbt, sbintime_t pr, int flags)
241{
242	struct thread *td;
243	struct proc *p;
244	int rval;
245	WITNESS_SAVE_DECL(mtx);
246
247	td = curthread;
248	p = td->td_proc;
249	KASSERT(mtx != NULL, ("sleeping without a mutex"));
250	KASSERT(p != NULL, ("msleep1"));
251	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
252
253	if (SCHEDULER_STOPPED())
254		return (0);
255
256	sleepq_lock(ident);
257	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
258	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
259
260	DROP_GIANT();
261	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
262	WITNESS_SAVE(&mtx->lock_object, mtx);
263	mtx_unlock_spin(mtx);
264
265	/*
266	 * We put ourselves on the sleep queue and start our timeout.
267	 */
268	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
269	if (sbt != 0)
270		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
271
272	/*
273	 * Can't call ktrace with any spin locks held so it can lock the
274	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
275	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
276	 * we handle those requests.  This is safe since we have placed our
277	 * thread on the sleep queue already.
278	 */
279#ifdef KTRACE
280	if (KTRPOINT(td, KTR_CSW)) {
281		sleepq_release(ident);
282		ktrcsw(1, 0, wmesg);
283		sleepq_lock(ident);
284	}
285#endif
286#ifdef WITNESS
287	sleepq_release(ident);
288	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
289	    wmesg);
290	sleepq_lock(ident);
291#endif
292	if (sbt != 0)
293		rval = sleepq_timedwait(ident, 0);
294	else {
295		sleepq_wait(ident, 0);
296		rval = 0;
297	}
298#ifdef KTRACE
299	if (KTRPOINT(td, KTR_CSW))
300		ktrcsw(0, 0, wmesg);
301#endif
302	PICKUP_GIANT();
303	mtx_lock_spin(mtx);
304	WITNESS_RESTORE(&mtx->lock_object, mtx);
305	return (rval);
306}
307
308/*
309 * pause() delays the calling thread by the given number of system ticks.
310 * During cold bootup, pause() uses the DELAY() function instead of
311 * the tsleep() function to do the waiting. The "timo" argument must be
312 * greater than or equal to zero. A "timo" value of zero is equivalent
313 * to a "timo" value of one.
314 */
315int
316pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
317{
318	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
319
320	/* silently convert invalid timeouts */
321	if (sbt == 0)
322		sbt = tick_sbt;
323
324	if (cold || kdb_active || SCHEDULER_STOPPED()) {
325		/*
326		 * We delay one second at a time to avoid overflowing the
327		 * system specific DELAY() function(s):
328		 */
329		while (sbt >= SBT_1S) {
330			DELAY(1000000);
331			sbt -= SBT_1S;
332		}
333		/* Do the delay remainder, if any */
334		sbt = howmany(sbt, SBT_1US);
335		if (sbt > 0)
336			DELAY(sbt);
337		return (0);
338	}
339	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
340}
341
342/*
343 * Make all threads sleeping on the specified identifier runnable.
344 */
345void
346wakeup(void *ident)
347{
348	int wakeup_swapper;
349
350	sleepq_lock(ident);
351	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
352	sleepq_release(ident);
353	if (wakeup_swapper) {
354		KASSERT(ident != &proc0,
355		    ("wakeup and wakeup_swapper and proc0"));
356		kick_proc0();
357	}
358}
359
360/*
361 * Make a thread sleeping on the specified identifier runnable.
362 * May wake more than one thread if a target thread is currently
363 * swapped out.
364 */
365void
366wakeup_one(void *ident)
367{
368	int wakeup_swapper;
369
370	sleepq_lock(ident);
371	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
372	sleepq_release(ident);
373	if (wakeup_swapper)
374		kick_proc0();
375}
376
377static void
378kdb_switch(void)
379{
380	thread_unlock(curthread);
381	kdb_backtrace();
382	kdb_reenter();
383	panic("%s: did not reenter debugger", __func__);
384}
385
386/*
387 * The machine independent parts of context switching.
388 */
389void
390mi_switch(int flags, struct thread *newtd)
391{
392	uint64_t runtime, new_switchtime;
393	struct thread *td;
394
395	td = curthread;			/* XXX */
396	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
397	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
398#ifdef INVARIANTS
399	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
400		mtx_assert(&Giant, MA_NOTOWNED);
401#endif
402	KASSERT(td->td_critnest == 1 || panicstr,
403	    ("mi_switch: switch in a critical section"));
404	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
405	    ("mi_switch: switch must be voluntary or involuntary"));
406	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
407
408	/*
409	 * Don't perform context switches from the debugger.
410	 */
411	if (kdb_active)
412		kdb_switch();
413	if (SCHEDULER_STOPPED())
414		return;
415	if (flags & SW_VOL) {
416		td->td_ru.ru_nvcsw++;
417		td->td_swvoltick = ticks;
418	} else {
419		td->td_ru.ru_nivcsw++;
420		td->td_swinvoltick = ticks;
421	}
422#ifdef SCHED_STATS
423	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
424#endif
425	/*
426	 * Compute the amount of time during which the current
427	 * thread was running, and add that to its total so far.
428	 */
429	new_switchtime = cpu_ticks();
430	runtime = new_switchtime - PCPU_GET(switchtime);
431	td->td_runtime += runtime;
432	td->td_incruntime += runtime;
433	PCPU_SET(switchtime, new_switchtime);
434	td->td_generation++;	/* bump preempt-detect counter */
435	PCPU_INC(cnt.v_swtch);
436	PCPU_SET(switchticks, ticks);
437	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
438	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
439#if (KTR_COMPILE & KTR_SCHED) != 0
440	if (TD_IS_IDLETHREAD(td))
441		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
442		    "prio:%d", td->td_priority);
443	else
444		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
445		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
446		    "lockname:\"%s\"", td->td_lockname);
447#endif
448	SDT_PROBE0(sched, , , preempt);
449	sched_switch(td, newtd, flags);
450	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
451	    "prio:%d", td->td_priority);
452
453	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
454	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
455
456	/*
457	 * If the last thread was exiting, finish cleaning it up.
458	 */
459	if ((td = PCPU_GET(deadthread))) {
460		PCPU_SET(deadthread, NULL);
461		thread_stash(td);
462	}
463}
464
465/*
466 * Change thread state to be runnable, placing it on the run queue if
467 * it is in memory.  If it is swapped out, return true so our caller
468 * will know to awaken the swapper.
469 */
470int
471setrunnable(struct thread *td)
472{
473
474	THREAD_LOCK_ASSERT(td, MA_OWNED);
475	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
476	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
477	switch (td->td_state) {
478	case TDS_RUNNING:
479	case TDS_RUNQ:
480		return (0);
481	case TDS_INHIBITED:
482		/*
483		 * If we are only inhibited because we are swapped out
484		 * then arange to swap in this process. Otherwise just return.
485		 */
486		if (td->td_inhibitors != TDI_SWAPPED)
487			return (0);
488		/* FALLTHROUGH */
489	case TDS_CAN_RUN:
490		break;
491	default:
492		printf("state is 0x%x", td->td_state);
493		panic("setrunnable(2)");
494	}
495	if ((td->td_flags & TDF_INMEM) == 0) {
496		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
497			td->td_flags |= TDF_SWAPINREQ;
498			return (1);
499		}
500	} else
501		sched_wakeup(td);
502	return (0);
503}
504
505/*
506 * Compute a tenex style load average of a quantity on
507 * 1, 5 and 15 minute intervals.
508 */
509static void
510loadav(void *arg)
511{
512	int i, nrun;
513	struct loadavg *avg;
514
515	nrun = sched_load();
516	avg = &averunnable;
517
518	for (i = 0; i < 3; i++)
519		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
520		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
521
522	/*
523	 * Schedule the next update to occur after 5 seconds, but add a
524	 * random variation to avoid synchronisation with processes that
525	 * run at regular intervals.
526	 */
527	callout_reset_sbt(&loadav_callout,
528	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
529	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
530}
531
532/* ARGSUSED */
533static void
534synch_setup(void *dummy)
535{
536	callout_init(&loadav_callout, 1);
537
538	/* Kick off timeout driven events by calling first time. */
539	loadav(NULL);
540}
541
542int
543should_yield(void)
544{
545
546	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
547}
548
549void
550maybe_yield(void)
551{
552
553	if (should_yield())
554		kern_yield(PRI_USER);
555}
556
557void
558kern_yield(int prio)
559{
560	struct thread *td;
561
562	td = curthread;
563	DROP_GIANT();
564	thread_lock(td);
565	if (prio == PRI_USER)
566		prio = td->td_user_pri;
567	if (prio >= 0)
568		sched_prio(td, prio);
569	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
570	thread_unlock(td);
571	PICKUP_GIANT();
572}
573
574/*
575 * General purpose yield system call.
576 */
577int
578sys_yield(struct thread *td, struct yield_args *uap)
579{
580
581	thread_lock(td);
582	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
583		sched_prio(td, PRI_MAX_TIMESHARE);
584	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
585	thread_unlock(td);
586	td->td_retval[0] = 0;
587	return (0);
588}
589