kern_synch.c revision 298649
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 298649 2016-04-26 15:38:17Z pfg $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/signalvar.h>
56#include <sys/sleepqueue.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/uio.h>
64#include <sys/ktrace.h>
65#endif
66
67#include <machine/cpu.h>
68
69#define	KTDSTATE(td)							\
70	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75
76static void synch_setup(void *dummy);
77SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78    NULL);
79
80int	hogticks;
81static uint8_t pause_wchan[MAXCPU];
82
83static struct callout loadav_callout;
84
85struct loadavg averunnable =
86	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87/*
88 * Constants for averages over 1, 5, and 15 minutes
89 * when sampling at 5 second intervals.
90 */
91static fixpt_t cexp[3] = {
92	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95};
96
97/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99
100static void	loadav(void *arg);
101
102SDT_PROVIDER_DECLARE(sched);
103SDT_PROBE_DEFINE(sched, , , preempt);
104
105static void
106sleepinit(void *unused)
107{
108
109	hogticks = (hz / 10) * 2;	/* Default only. */
110	init_sleepqueues();
111}
112
113/*
114 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115 * it is available.
116 */
117SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118
119/*
120 * General sleep call.  Suspends the current thread until a wakeup is
121 * performed on the specified identifier.  The thread will then be made
122 * runnable with the specified priority.  Sleeps at most sbt units of time
123 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126 * signal becomes pending, ERESTART is returned if the current system
127 * call should be restarted if possible, and EINTR is returned if the system
128 * call should be interrupted by the signal (return EINTR).
129 *
130 * The lock argument is unlocked before the caller is suspended, and
131 * re-locked before _sleep() returns.  If priority includes the PDROP
132 * flag the lock is not re-locked before returning.
133 */
134int
135_sleep(void *ident, struct lock_object *lock, int priority,
136    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137{
138	struct thread *td;
139	struct proc *p;
140	struct lock_class *class;
141	uintptr_t lock_state;
142	int catch, pri, rval, sleepq_flags;
143	WITNESS_SAVE_DECL(lock_witness);
144
145	td = curthread;
146	p = td->td_proc;
147#ifdef KTRACE
148	if (KTRPOINT(td, KTR_CSW))
149		ktrcsw(1, 0, wmesg);
150#endif
151	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152	    "Sleeping on \"%s\"", wmesg);
153	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154	    ("sleeping without a lock"));
155	KASSERT(p != NULL, ("msleep1"));
156	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157	if (priority & PDROP)
158		KASSERT(lock != NULL && lock != &Giant.lock_object,
159		    ("PDROP requires a non-Giant lock"));
160	if (lock != NULL)
161		class = LOCK_CLASS(lock);
162	else
163		class = NULL;
164
165	if (SCHEDULER_STOPPED()) {
166		if (lock != NULL && priority & PDROP)
167			class->lc_unlock(lock);
168		return (0);
169	}
170	catch = priority & PCATCH;
171	pri = priority & PRIMASK;
172
173	/*
174	 * If we are already on a sleep queue, then remove us from that
175	 * sleep queue first.  We have to do this to handle recursive
176	 * sleeps.
177	 */
178	if (TD_ON_SLEEPQ(td))
179		sleepq_remove(td, td->td_wchan);
180
181	if ((uint8_t *)ident >= &pause_wchan[0] &&
182	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
183		sleepq_flags = SLEEPQ_PAUSE;
184	else
185		sleepq_flags = SLEEPQ_SLEEP;
186	if (catch)
187		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
188
189	sleepq_lock(ident);
190	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
191	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
192
193	if (lock == &Giant.lock_object)
194		mtx_assert(&Giant, MA_OWNED);
195	DROP_GIANT();
196	if (lock != NULL && lock != &Giant.lock_object &&
197	    !(class->lc_flags & LC_SLEEPABLE)) {
198		WITNESS_SAVE(lock, lock_witness);
199		lock_state = class->lc_unlock(lock);
200	} else
201		/* GCC needs to follow the Yellow Brick Road */
202		lock_state = -1;
203
204	/*
205	 * We put ourselves on the sleep queue and start our timeout
206	 * before calling thread_suspend_check, as we could stop there,
207	 * and a wakeup or a SIGCONT (or both) could occur while we were
208	 * stopped without resuming us.  Thus, we must be ready for sleep
209	 * when cursig() is called.  If the wakeup happens while we're
210	 * stopped, then td will no longer be on a sleep queue upon
211	 * return from cursig().
212	 */
213	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
214	if (sbt != 0)
215		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
216	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
217		sleepq_release(ident);
218		WITNESS_SAVE(lock, lock_witness);
219		lock_state = class->lc_unlock(lock);
220		sleepq_lock(ident);
221	}
222	if (sbt != 0 && catch)
223		rval = sleepq_timedwait_sig(ident, pri);
224	else if (sbt != 0)
225		rval = sleepq_timedwait(ident, pri);
226	else if (catch)
227		rval = sleepq_wait_sig(ident, pri);
228	else {
229		sleepq_wait(ident, pri);
230		rval = 0;
231	}
232#ifdef KTRACE
233	if (KTRPOINT(td, KTR_CSW))
234		ktrcsw(0, 0, wmesg);
235#endif
236	PICKUP_GIANT();
237	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
238		class->lc_lock(lock, lock_state);
239		WITNESS_RESTORE(lock, lock_witness);
240	}
241	return (rval);
242}
243
244int
245msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
246    sbintime_t sbt, sbintime_t pr, int flags)
247{
248	struct thread *td;
249	struct proc *p;
250	int rval;
251	WITNESS_SAVE_DECL(mtx);
252
253	td = curthread;
254	p = td->td_proc;
255	KASSERT(mtx != NULL, ("sleeping without a mutex"));
256	KASSERT(p != NULL, ("msleep1"));
257	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
258
259	if (SCHEDULER_STOPPED())
260		return (0);
261
262	sleepq_lock(ident);
263	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
264	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
265
266	DROP_GIANT();
267	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
268	WITNESS_SAVE(&mtx->lock_object, mtx);
269	mtx_unlock_spin(mtx);
270
271	/*
272	 * We put ourselves on the sleep queue and start our timeout.
273	 */
274	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
275	if (sbt != 0)
276		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
277
278	/*
279	 * Can't call ktrace with any spin locks held so it can lock the
280	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
281	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
282	 * we handle those requests.  This is safe since we have placed our
283	 * thread on the sleep queue already.
284	 */
285#ifdef KTRACE
286	if (KTRPOINT(td, KTR_CSW)) {
287		sleepq_release(ident);
288		ktrcsw(1, 0, wmesg);
289		sleepq_lock(ident);
290	}
291#endif
292#ifdef WITNESS
293	sleepq_release(ident);
294	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
295	    wmesg);
296	sleepq_lock(ident);
297#endif
298	if (sbt != 0)
299		rval = sleepq_timedwait(ident, 0);
300	else {
301		sleepq_wait(ident, 0);
302		rval = 0;
303	}
304#ifdef KTRACE
305	if (KTRPOINT(td, KTR_CSW))
306		ktrcsw(0, 0, wmesg);
307#endif
308	PICKUP_GIANT();
309	mtx_lock_spin(mtx);
310	WITNESS_RESTORE(&mtx->lock_object, mtx);
311	return (rval);
312}
313
314/*
315 * pause() delays the calling thread by the given number of system ticks.
316 * During cold bootup, pause() uses the DELAY() function instead of
317 * the tsleep() function to do the waiting. The "timo" argument must be
318 * greater than or equal to zero. A "timo" value of zero is equivalent
319 * to a "timo" value of one.
320 */
321int
322pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
323{
324	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
325
326	/* silently convert invalid timeouts */
327	if (sbt == 0)
328		sbt = tick_sbt;
329
330	if (cold || kdb_active) {
331		/*
332		 * We delay one second at a time to avoid overflowing the
333		 * system specific DELAY() function(s):
334		 */
335		while (sbt >= SBT_1S) {
336			DELAY(1000000);
337			sbt -= SBT_1S;
338		}
339		/* Do the delay remainder, if any */
340		sbt = howmany(sbt, SBT_1US);
341		if (sbt > 0)
342			DELAY(sbt);
343		return (0);
344	}
345	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
346}
347
348/*
349 * Make all threads sleeping on the specified identifier runnable.
350 */
351void
352wakeup(void *ident)
353{
354	int wakeup_swapper;
355
356	sleepq_lock(ident);
357	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
358	sleepq_release(ident);
359	if (wakeup_swapper) {
360		KASSERT(ident != &proc0,
361		    ("wakeup and wakeup_swapper and proc0"));
362		kick_proc0();
363	}
364}
365
366/*
367 * Make a thread sleeping on the specified identifier runnable.
368 * May wake more than one thread if a target thread is currently
369 * swapped out.
370 */
371void
372wakeup_one(void *ident)
373{
374	int wakeup_swapper;
375
376	sleepq_lock(ident);
377	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
378	sleepq_release(ident);
379	if (wakeup_swapper)
380		kick_proc0();
381}
382
383static void
384kdb_switch(void)
385{
386	thread_unlock(curthread);
387	kdb_backtrace();
388	kdb_reenter();
389	panic("%s: did not reenter debugger", __func__);
390}
391
392/*
393 * The machine independent parts of context switching.
394 */
395void
396mi_switch(int flags, struct thread *newtd)
397{
398	uint64_t runtime, new_switchtime;
399	struct thread *td;
400
401	td = curthread;			/* XXX */
402	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
403	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
404#ifdef INVARIANTS
405	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
406		mtx_assert(&Giant, MA_NOTOWNED);
407#endif
408	KASSERT(td->td_critnest == 1 || panicstr,
409	    ("mi_switch: switch in a critical section"));
410	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
411	    ("mi_switch: switch must be voluntary or involuntary"));
412	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
413
414	/*
415	 * Don't perform context switches from the debugger.
416	 */
417	if (kdb_active)
418		kdb_switch();
419	if (SCHEDULER_STOPPED())
420		return;
421	if (flags & SW_VOL) {
422		td->td_ru.ru_nvcsw++;
423		td->td_swvoltick = ticks;
424	} else {
425		td->td_ru.ru_nivcsw++;
426		td->td_swinvoltick = ticks;
427	}
428#ifdef SCHED_STATS
429	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
430#endif
431	/*
432	 * Compute the amount of time during which the current
433	 * thread was running, and add that to its total so far.
434	 */
435	new_switchtime = cpu_ticks();
436	runtime = new_switchtime - PCPU_GET(switchtime);
437	td->td_runtime += runtime;
438	td->td_incruntime += runtime;
439	PCPU_SET(switchtime, new_switchtime);
440	td->td_generation++;	/* bump preempt-detect counter */
441	PCPU_INC(cnt.v_swtch);
442	PCPU_SET(switchticks, ticks);
443	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
444	    td->td_tid, td->td_sched, td->td_proc->p_pid, td->td_name);
445#if (KTR_COMPILE & KTR_SCHED) != 0
446	if (TD_IS_IDLETHREAD(td))
447		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
448		    "prio:%d", td->td_priority);
449	else
450		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
451		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
452		    "lockname:\"%s\"", td->td_lockname);
453#endif
454	SDT_PROBE0(sched, , , preempt);
455	sched_switch(td, newtd, flags);
456	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
457	    "prio:%d", td->td_priority);
458
459	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
460	    td->td_tid, td->td_sched, td->td_proc->p_pid, td->td_name);
461
462	/*
463	 * If the last thread was exiting, finish cleaning it up.
464	 */
465	if ((td = PCPU_GET(deadthread))) {
466		PCPU_SET(deadthread, NULL);
467		thread_stash(td);
468	}
469}
470
471/*
472 * Change thread state to be runnable, placing it on the run queue if
473 * it is in memory.  If it is swapped out, return true so our caller
474 * will know to awaken the swapper.
475 */
476int
477setrunnable(struct thread *td)
478{
479
480	THREAD_LOCK_ASSERT(td, MA_OWNED);
481	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
482	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
483	switch (td->td_state) {
484	case TDS_RUNNING:
485	case TDS_RUNQ:
486		return (0);
487	case TDS_INHIBITED:
488		/*
489		 * If we are only inhibited because we are swapped out
490		 * then arange to swap in this process. Otherwise just return.
491		 */
492		if (td->td_inhibitors != TDI_SWAPPED)
493			return (0);
494		/* FALLTHROUGH */
495	case TDS_CAN_RUN:
496		break;
497	default:
498		printf("state is 0x%x", td->td_state);
499		panic("setrunnable(2)");
500	}
501	if ((td->td_flags & TDF_INMEM) == 0) {
502		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
503			td->td_flags |= TDF_SWAPINREQ;
504			return (1);
505		}
506	} else
507		sched_wakeup(td);
508	return (0);
509}
510
511/*
512 * Compute a tenex style load average of a quantity on
513 * 1, 5 and 15 minute intervals.
514 */
515static void
516loadav(void *arg)
517{
518	int i, nrun;
519	struct loadavg *avg;
520
521	nrun = sched_load();
522	avg = &averunnable;
523
524	for (i = 0; i < 3; i++)
525		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
526		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
527
528	/*
529	 * Schedule the next update to occur after 5 seconds, but add a
530	 * random variation to avoid synchronisation with processes that
531	 * run at regular intervals.
532	 */
533	callout_reset_sbt(&loadav_callout,
534	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
535	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
536}
537
538/* ARGSUSED */
539static void
540synch_setup(void *dummy)
541{
542	callout_init(&loadav_callout, 1);
543
544	/* Kick off timeout driven events by calling first time. */
545	loadav(NULL);
546}
547
548int
549should_yield(void)
550{
551
552	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
553}
554
555void
556maybe_yield(void)
557{
558
559	if (should_yield())
560		kern_yield(PRI_USER);
561}
562
563void
564kern_yield(int prio)
565{
566	struct thread *td;
567
568	td = curthread;
569	DROP_GIANT();
570	thread_lock(td);
571	if (prio == PRI_USER)
572		prio = td->td_user_pri;
573	if (prio >= 0)
574		sched_prio(td, prio);
575	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
576	thread_unlock(td);
577	PICKUP_GIANT();
578}
579
580/*
581 * General purpose yield system call.
582 */
583int
584sys_yield(struct thread *td, struct yield_args *uap)
585{
586
587	thread_lock(td);
588	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
589		sched_prio(td, PRI_MAX_TIMESHARE);
590	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
591	thread_unlock(td);
592	td->td_retval[0] = 0;
593	return (0);
594}
595