kern_synch.c revision 277213
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 277213 2015-01-15 15:32:30Z hselasky $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/signalvar.h>
56#include <sys/sleepqueue.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/uio.h>
64#include <sys/ktrace.h>
65#endif
66
67#include <machine/cpu.h>
68
69#ifdef XEN
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <vm/pmap.h>
73#endif
74
75#define	KTDSTATE(td)							\
76	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
77	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
78	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
79	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
80	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
81
82static void synch_setup(void *dummy);
83SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
84    NULL);
85
86int	hogticks;
87static uint8_t pause_wchan[MAXCPU];
88
89static struct callout loadav_callout;
90
91struct loadavg averunnable =
92	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
93/*
94 * Constants for averages over 1, 5, and 15 minutes
95 * when sampling at 5 second intervals.
96 */
97static fixpt_t cexp[3] = {
98	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
99	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
100	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
101};
102
103/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
104SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
105
106static void	loadav(void *arg);
107
108SDT_PROVIDER_DECLARE(sched);
109SDT_PROBE_DEFINE(sched, , , preempt);
110
111/*
112 * These probes reference Solaris features that are not implemented in FreeBSD.
113 * Create the probes anyway for compatibility with existing D scripts; they'll
114 * just never fire.
115 */
116SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
117SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
118SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
119SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
120SDT_PROBE_DEFINE(sched, , , schedctl__yield);
121
122static void
123sleepinit(void *unused)
124{
125
126	hogticks = (hz / 10) * 2;	/* Default only. */
127	init_sleepqueues();
128}
129
130/*
131 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
132 * it is available.
133 */
134SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
135
136/*
137 * General sleep call.  Suspends the current thread until a wakeup is
138 * performed on the specified identifier.  The thread will then be made
139 * runnable with the specified priority.  Sleeps at most sbt units of time
140 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
141 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
142 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
143 * signal becomes pending, ERESTART is returned if the current system
144 * call should be restarted if possible, and EINTR is returned if the system
145 * call should be interrupted by the signal (return EINTR).
146 *
147 * The lock argument is unlocked before the caller is suspended, and
148 * re-locked before _sleep() returns.  If priority includes the PDROP
149 * flag the lock is not re-locked before returning.
150 */
151int
152_sleep(void *ident, struct lock_object *lock, int priority,
153    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
154{
155	struct thread *td;
156	struct proc *p;
157	struct lock_class *class;
158	uintptr_t lock_state;
159	int catch, pri, rval, sleepq_flags;
160	WITNESS_SAVE_DECL(lock_witness);
161
162	td = curthread;
163	p = td->td_proc;
164#ifdef KTRACE
165	if (KTRPOINT(td, KTR_CSW))
166		ktrcsw(1, 0, wmesg);
167#endif
168	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
169	    "Sleeping on \"%s\"", wmesg);
170	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
171	    ("sleeping without a lock"));
172	KASSERT(p != NULL, ("msleep1"));
173	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
174	if (priority & PDROP)
175		KASSERT(lock != NULL && lock != &Giant.lock_object,
176		    ("PDROP requires a non-Giant lock"));
177	if (lock != NULL)
178		class = LOCK_CLASS(lock);
179	else
180		class = NULL;
181
182	if (cold || SCHEDULER_STOPPED()) {
183		/*
184		 * During autoconfiguration, just return;
185		 * don't run any other threads or panic below,
186		 * in case this is the idle thread and already asleep.
187		 * XXX: this used to do "s = splhigh(); splx(safepri);
188		 * splx(s);" to give interrupts a chance, but there is
189		 * no way to give interrupts a chance now.
190		 */
191		if (lock != NULL && priority & PDROP)
192			class->lc_unlock(lock);
193		return (0);
194	}
195	catch = priority & PCATCH;
196	pri = priority & PRIMASK;
197
198	/*
199	 * If we are already on a sleep queue, then remove us from that
200	 * sleep queue first.  We have to do this to handle recursive
201	 * sleeps.
202	 */
203	if (TD_ON_SLEEPQ(td))
204		sleepq_remove(td, td->td_wchan);
205
206	if ((uint8_t *)ident >= &pause_wchan[0] &&
207	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
208		sleepq_flags = SLEEPQ_PAUSE;
209	else
210		sleepq_flags = SLEEPQ_SLEEP;
211	if (catch)
212		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
213
214	sleepq_lock(ident);
215	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
216	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
217
218	if (lock == &Giant.lock_object)
219		mtx_assert(&Giant, MA_OWNED);
220	DROP_GIANT();
221	if (lock != NULL && lock != &Giant.lock_object &&
222	    !(class->lc_flags & LC_SLEEPABLE)) {
223		WITNESS_SAVE(lock, lock_witness);
224		lock_state = class->lc_unlock(lock);
225	} else
226		/* GCC needs to follow the Yellow Brick Road */
227		lock_state = -1;
228
229	/*
230	 * We put ourselves on the sleep queue and start our timeout
231	 * before calling thread_suspend_check, as we could stop there,
232	 * and a wakeup or a SIGCONT (or both) could occur while we were
233	 * stopped without resuming us.  Thus, we must be ready for sleep
234	 * when cursig() is called.  If the wakeup happens while we're
235	 * stopped, then td will no longer be on a sleep queue upon
236	 * return from cursig().
237	 */
238	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
239	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
240		sleepq_release(ident);
241		WITNESS_SAVE(lock, lock_witness);
242		lock_state = class->lc_unlock(lock);
243		if (sbt != 0)
244			sleepq_set_timeout_sbt(ident, sbt, pr, flags);
245		sleepq_lock(ident);
246	} else if (sbt != 0) {
247		sleepq_release(ident);
248		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
249		sleepq_lock(ident);
250	}
251	if (sbt != 0 && catch)
252		rval = sleepq_timedwait_sig(ident, pri);
253	else if (sbt != 0)
254		rval = sleepq_timedwait(ident, pri);
255	else if (catch)
256		rval = sleepq_wait_sig(ident, pri);
257	else {
258		sleepq_wait(ident, pri);
259		rval = 0;
260	}
261#ifdef KTRACE
262	if (KTRPOINT(td, KTR_CSW))
263		ktrcsw(0, 0, wmesg);
264#endif
265	PICKUP_GIANT();
266	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
267		class->lc_lock(lock, lock_state);
268		WITNESS_RESTORE(lock, lock_witness);
269	}
270	return (rval);
271}
272
273int
274msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
275    sbintime_t sbt, sbintime_t pr, int flags)
276{
277	struct thread *td;
278	struct proc *p;
279	int rval;
280	WITNESS_SAVE_DECL(mtx);
281
282	td = curthread;
283	p = td->td_proc;
284	KASSERT(mtx != NULL, ("sleeping without a mutex"));
285	KASSERT(p != NULL, ("msleep1"));
286	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
287
288	if (cold || SCHEDULER_STOPPED()) {
289		/*
290		 * During autoconfiguration, just return;
291		 * don't run any other threads or panic below,
292		 * in case this is the idle thread and already asleep.
293		 * XXX: this used to do "s = splhigh(); splx(safepri);
294		 * splx(s);" to give interrupts a chance, but there is
295		 * no way to give interrupts a chance now.
296		 */
297		return (0);
298	}
299
300	sleepq_lock(ident);
301	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
302	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
303
304	DROP_GIANT();
305	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
306	WITNESS_SAVE(&mtx->lock_object, mtx);
307	mtx_unlock_spin(mtx);
308
309	/*
310	 * We put ourselves on the sleep queue and start our timeout.
311	 */
312	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
313	if (sbt != 0) {
314		sleepq_release(ident);
315		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
316		sleepq_lock(ident);
317	}
318
319	/*
320	 * Can't call ktrace with any spin locks held so it can lock the
321	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
322	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
323	 * we handle those requests.  This is safe since we have placed our
324	 * thread on the sleep queue already.
325	 */
326#ifdef KTRACE
327	if (KTRPOINT(td, KTR_CSW)) {
328		sleepq_release(ident);
329		ktrcsw(1, 0, wmesg);
330		sleepq_lock(ident);
331	}
332#endif
333#ifdef WITNESS
334	sleepq_release(ident);
335	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
336	    wmesg);
337	sleepq_lock(ident);
338#endif
339	if (sbt != 0)
340		rval = sleepq_timedwait(ident, 0);
341	else {
342		sleepq_wait(ident, 0);
343		rval = 0;
344	}
345#ifdef KTRACE
346	if (KTRPOINT(td, KTR_CSW))
347		ktrcsw(0, 0, wmesg);
348#endif
349	PICKUP_GIANT();
350	mtx_lock_spin(mtx);
351	WITNESS_RESTORE(&mtx->lock_object, mtx);
352	return (rval);
353}
354
355/*
356 * pause() delays the calling thread by the given number of system ticks.
357 * During cold bootup, pause() uses the DELAY() function instead of
358 * the tsleep() function to do the waiting. The "timo" argument must be
359 * greater than or equal to zero. A "timo" value of zero is equivalent
360 * to a "timo" value of one.
361 */
362int
363pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
364{
365	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
366
367	/* silently convert invalid timeouts */
368	if (sbt == 0)
369		sbt = tick_sbt;
370
371	if (cold || kdb_active) {
372		/*
373		 * We delay one second at a time to avoid overflowing the
374		 * system specific DELAY() function(s):
375		 */
376		while (sbt >= SBT_1S) {
377			DELAY(1000000);
378			sbt -= SBT_1S;
379		}
380		/* Do the delay remainder, if any */
381		sbt = (sbt + SBT_1US - 1) / SBT_1US;
382		if (sbt > 0)
383			DELAY(sbt);
384		return (0);
385	}
386	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
387}
388
389/*
390 * Make all threads sleeping on the specified identifier runnable.
391 */
392void
393wakeup(void *ident)
394{
395	int wakeup_swapper;
396
397	sleepq_lock(ident);
398	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
399	sleepq_release(ident);
400	if (wakeup_swapper) {
401		KASSERT(ident != &proc0,
402		    ("wakeup and wakeup_swapper and proc0"));
403		kick_proc0();
404	}
405}
406
407/*
408 * Make a thread sleeping on the specified identifier runnable.
409 * May wake more than one thread if a target thread is currently
410 * swapped out.
411 */
412void
413wakeup_one(void *ident)
414{
415	int wakeup_swapper;
416
417	sleepq_lock(ident);
418	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
419	sleepq_release(ident);
420	if (wakeup_swapper)
421		kick_proc0();
422}
423
424static void
425kdb_switch(void)
426{
427	thread_unlock(curthread);
428	kdb_backtrace();
429	kdb_reenter();
430	panic("%s: did not reenter debugger", __func__);
431}
432
433/*
434 * The machine independent parts of context switching.
435 */
436void
437mi_switch(int flags, struct thread *newtd)
438{
439	uint64_t runtime, new_switchtime;
440	struct thread *td;
441	struct proc *p;
442
443	td = curthread;			/* XXX */
444	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
445	p = td->td_proc;		/* XXX */
446	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
447#ifdef INVARIANTS
448	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
449		mtx_assert(&Giant, MA_NOTOWNED);
450#endif
451	KASSERT(td->td_critnest == 1 || panicstr,
452	    ("mi_switch: switch in a critical section"));
453	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
454	    ("mi_switch: switch must be voluntary or involuntary"));
455	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
456
457	/*
458	 * Don't perform context switches from the debugger.
459	 */
460	if (kdb_active)
461		kdb_switch();
462	if (SCHEDULER_STOPPED())
463		return;
464	if (flags & SW_VOL) {
465		td->td_ru.ru_nvcsw++;
466		td->td_swvoltick = ticks;
467	} else
468		td->td_ru.ru_nivcsw++;
469#ifdef SCHED_STATS
470	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
471#endif
472	/*
473	 * Compute the amount of time during which the current
474	 * thread was running, and add that to its total so far.
475	 */
476	new_switchtime = cpu_ticks();
477	runtime = new_switchtime - PCPU_GET(switchtime);
478	td->td_runtime += runtime;
479	td->td_incruntime += runtime;
480	PCPU_SET(switchtime, new_switchtime);
481	td->td_generation++;	/* bump preempt-detect counter */
482	PCPU_INC(cnt.v_swtch);
483	PCPU_SET(switchticks, ticks);
484	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
485	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
486#if (KTR_COMPILE & KTR_SCHED) != 0
487	if (TD_IS_IDLETHREAD(td))
488		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
489		    "prio:%d", td->td_priority);
490	else
491		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
492		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
493		    "lockname:\"%s\"", td->td_lockname);
494#endif
495	SDT_PROBE0(sched, , , preempt);
496#ifdef XEN
497	PT_UPDATES_FLUSH();
498#endif
499	sched_switch(td, newtd, flags);
500	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
501	    "prio:%d", td->td_priority);
502
503	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
504	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
505
506	/*
507	 * If the last thread was exiting, finish cleaning it up.
508	 */
509	if ((td = PCPU_GET(deadthread))) {
510		PCPU_SET(deadthread, NULL);
511		thread_stash(td);
512	}
513}
514
515/*
516 * Change thread state to be runnable, placing it on the run queue if
517 * it is in memory.  If it is swapped out, return true so our caller
518 * will know to awaken the swapper.
519 */
520int
521setrunnable(struct thread *td)
522{
523
524	THREAD_LOCK_ASSERT(td, MA_OWNED);
525	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
526	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
527	switch (td->td_state) {
528	case TDS_RUNNING:
529	case TDS_RUNQ:
530		return (0);
531	case TDS_INHIBITED:
532		/*
533		 * If we are only inhibited because we are swapped out
534		 * then arange to swap in this process. Otherwise just return.
535		 */
536		if (td->td_inhibitors != TDI_SWAPPED)
537			return (0);
538		/* FALLTHROUGH */
539	case TDS_CAN_RUN:
540		break;
541	default:
542		printf("state is 0x%x", td->td_state);
543		panic("setrunnable(2)");
544	}
545	if ((td->td_flags & TDF_INMEM) == 0) {
546		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
547			td->td_flags |= TDF_SWAPINREQ;
548			return (1);
549		}
550	} else
551		sched_wakeup(td);
552	return (0);
553}
554
555/*
556 * Compute a tenex style load average of a quantity on
557 * 1, 5 and 15 minute intervals.
558 */
559static void
560loadav(void *arg)
561{
562	int i, nrun;
563	struct loadavg *avg;
564
565	nrun = sched_load();
566	avg = &averunnable;
567
568	for (i = 0; i < 3; i++)
569		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
570		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
571
572	/*
573	 * Schedule the next update to occur after 5 seconds, but add a
574	 * random variation to avoid synchronisation with processes that
575	 * run at regular intervals.
576	 */
577	callout_reset_sbt(&loadav_callout,
578	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
579	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
580}
581
582/* ARGSUSED */
583static void
584synch_setup(void *dummy)
585{
586	callout_init(&loadav_callout, CALLOUT_MPSAFE);
587
588	/* Kick off timeout driven events by calling first time. */
589	loadav(NULL);
590}
591
592int
593should_yield(void)
594{
595
596	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
597}
598
599void
600maybe_yield(void)
601{
602
603	if (should_yield())
604		kern_yield(PRI_USER);
605}
606
607void
608kern_yield(int prio)
609{
610	struct thread *td;
611
612	td = curthread;
613	DROP_GIANT();
614	thread_lock(td);
615	if (prio == PRI_USER)
616		prio = td->td_user_pri;
617	if (prio >= 0)
618		sched_prio(td, prio);
619	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
620	thread_unlock(td);
621	PICKUP_GIANT();
622}
623
624/*
625 * General purpose yield system call.
626 */
627int
628sys_yield(struct thread *td, struct yield_args *uap)
629{
630
631	thread_lock(td);
632	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
633		sched_prio(td, PRI_MAX_TIMESHARE);
634	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
635	thread_unlock(td);
636	td->td_retval[0] = 0;
637	return (0);
638}
639