kern_synch.c revision 25164
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $Id: kern_synch.c,v 1.30 1997/02/27 18:03:48 bde Exp $
40 */
41
42#include "opt_ktrace.h"
43#include "opt_smp.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/proc.h>
48#include <sys/kernel.h>
49#include <sys/buf.h>
50#include <sys/signalvar.h>
51#include <sys/resourcevar.h>
52#include <sys/signalvar.h>
53#include <sys/vmmeter.h>
54#include <vm/vm.h>
55#include <vm/vm_param.h>
56#include <vm/vm_extern.h>
57#ifdef KTRACE
58#include <sys/ktrace.h>
59#endif
60
61#include <machine/cpu.h>
62
63static void rqinit __P((void *));
64SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
65
66u_char	curpriority;		/* usrpri of curproc */
67int	lbolt;			/* once a second sleep address */
68
69extern void	endtsleep __P((void *));
70extern void	updatepri __P((struct proc *p));
71
72/*
73 * Force switch among equal priority processes every 100ms.
74 */
75/* ARGSUSED */
76void
77roundrobin(arg)
78	void *arg;
79{
80
81	need_resched();
82	timeout(roundrobin, NULL, hz / 10);
83}
84
85/*
86 * Constants for digital decay and forget:
87 *	90% of (p_estcpu) usage in 5 * loadav time
88 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
89 *          Note that, as ps(1) mentions, this can let percentages
90 *          total over 100% (I've seen 137.9% for 3 processes).
91 *
92 * Note that statclock updates p_estcpu and p_cpticks independently.
93 *
94 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
95 * That is, the system wants to compute a value of decay such
96 * that the following for loop:
97 * 	for (i = 0; i < (5 * loadavg); i++)
98 * 		p_estcpu *= decay;
99 * will compute
100 * 	p_estcpu *= 0.1;
101 * for all values of loadavg:
102 *
103 * Mathematically this loop can be expressed by saying:
104 * 	decay ** (5 * loadavg) ~= .1
105 *
106 * The system computes decay as:
107 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
108 *
109 * We wish to prove that the system's computation of decay
110 * will always fulfill the equation:
111 * 	decay ** (5 * loadavg) ~= .1
112 *
113 * If we compute b as:
114 * 	b = 2 * loadavg
115 * then
116 * 	decay = b / (b + 1)
117 *
118 * We now need to prove two things:
119 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
120 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
121 *
122 * Facts:
123 *         For x close to zero, exp(x) =~ 1 + x, since
124 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
125 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
126 *         For x close to zero, ln(1+x) =~ x, since
127 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
128 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
129 *         ln(.1) =~ -2.30
130 *
131 * Proof of (1):
132 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
133 *	solving for factor,
134 *      ln(factor) =~ (-2.30/5*loadav), or
135 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
136 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
137 *
138 * Proof of (2):
139 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
140 *	solving for power,
141 *      power*ln(b/(b+1)) =~ -2.30, or
142 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
143 *
144 * Actual power values for the implemented algorithm are as follows:
145 *      loadav: 1       2       3       4
146 *      power:  5.68    10.32   14.94   19.55
147 */
148
149/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
150#define	loadfactor(loadav)	(2 * (loadav))
151#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
152
153/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
154fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
155
156/*
157 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
158 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
159 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
160 *
161 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
162 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
163 *
164 * If you dont want to bother with the faster/more-accurate formula, you
165 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
166 * (more general) method of calculating the %age of CPU used by a process.
167 */
168#define	CCPU_SHIFT	11
169
170/*
171 * Recompute process priorities, every hz ticks.
172 */
173/* ARGSUSED */
174void
175schedcpu(arg)
176	void *arg;
177{
178	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
179	register struct proc *p;
180	register int s, i, j;
181	register unsigned int newcpu;
182
183	wakeup((caddr_t)&lbolt);
184	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
185		/*
186		 * Increment time in/out of memory and sleep time
187		 * (if sleeping).  We ignore overflow; with 16-bit int's
188		 * (remember them?) overflow takes 45 days.
189		 */
190		p->p_swtime++;
191		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
192			p->p_slptime++;
193		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
194		/*
195		 * If the process has slept the entire second,
196		 * stop recalculating its priority until it wakes up.
197		 */
198		if (p->p_slptime > 1)
199			continue;
200		s = splhigh();	/* prevent state changes and protect run queue */
201		/*
202		 * p_pctcpu is only for ps.
203		 */
204#if	(FSHIFT >= CCPU_SHIFT)
205		p->p_pctcpu += (hz == 100)?
206			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
207                	100 * (((fixpt_t) p->p_cpticks)
208				<< (FSHIFT - CCPU_SHIFT)) / hz;
209#else
210		p->p_pctcpu += ((FSCALE - ccpu) *
211			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
212#endif
213		p->p_cpticks = 0;
214		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
215		p->p_estcpu = min(newcpu, UCHAR_MAX);
216		resetpriority(p);
217		if (p->p_priority >= PUSER) {
218#define	PPQ	(128 / NQS)		/* priorities per queue */
219#ifdef SMP
220			for (j = i = 0; i < NCPU; i++) {
221				if (p == SMPcurproc[i])
222					j++;
223			}
224			if (!j &&
225
226#else
227			if ((p != curproc) &&
228#endif
229			    p->p_stat == SRUN &&
230			    (p->p_flag & P_INMEM) &&
231			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
232				remrq(p);
233				p->p_priority = p->p_usrpri;
234				setrunqueue(p);
235			} else
236				p->p_priority = p->p_usrpri;
237		}
238		splx(s);
239	not_mine:
240	}
241	vmmeter();
242	timeout(schedcpu, (void *)0, hz);
243}
244
245/*
246 * Recalculate the priority of a process after it has slept for a while.
247 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
248 * least six times the loadfactor will decay p_estcpu to zero.
249 */
250void
251updatepri(p)
252	register struct proc *p;
253{
254	register unsigned int newcpu = p->p_estcpu;
255	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
256
257	if (p->p_slptime > 5 * loadfac)
258		p->p_estcpu = 0;
259	else {
260		p->p_slptime--;	/* the first time was done in schedcpu */
261		while (newcpu && --p->p_slptime)
262			newcpu = (int) decay_cpu(loadfac, newcpu);
263		p->p_estcpu = min(newcpu, UCHAR_MAX);
264	}
265	resetpriority(p);
266}
267
268/*
269 * We're only looking at 7 bits of the address; everything is
270 * aligned to 4, lots of things are aligned to greater powers
271 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
272 */
273#define TABLESIZE	128
274TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
275#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
276
277/*
278 * During autoconfiguration or after a panic, a sleep will simply
279 * lower the priority briefly to allow interrupts, then return.
280 * The priority to be used (safepri) is machine-dependent, thus this
281 * value is initialized and maintained in the machine-dependent layers.
282 * This priority will typically be 0, or the lowest priority
283 * that is safe for use on the interrupt stack; it can be made
284 * higher to block network software interrupts after panics.
285 */
286int safepri;
287
288void
289sleepinit()
290{
291	int i;
292
293	for (i = 0; i < TABLESIZE; i++)
294		TAILQ_INIT(&slpque[i]);
295}
296
297/*
298 * General sleep call.  Suspends the current process until a wakeup is
299 * performed on the specified identifier.  The process will then be made
300 * runnable with the specified priority.  Sleeps at most timo/hz seconds
301 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
302 * before and after sleeping, else signals are not checked.  Returns 0 if
303 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
304 * signal needs to be delivered, ERESTART is returned if the current system
305 * call should be restarted if possible, and EINTR is returned if the system
306 * call should be interrupted by the signal (return EINTR).
307 */
308int
309tsleep(ident, priority, wmesg, timo)
310	void *ident;
311	int priority, timo;
312	char *wmesg;
313{
314	struct proc *p = curproc;
315	int s, sig, catch = priority & PCATCH;
316
317#ifdef KTRACE
318	if (KTRPOINT(p, KTR_CSW))
319		ktrcsw(p->p_tracep, 1, 0);
320#endif
321	s = splhigh();
322	if (cold || panicstr) {
323		/*
324		 * After a panic, or during autoconfiguration,
325		 * just give interrupts a chance, then just return;
326		 * don't run any other procs or panic below,
327		 * in case this is the idle process and already asleep.
328		 */
329		splx(safepri);
330		splx(s);
331		return (0);
332	}
333#ifdef DIAGNOSTIC
334	if (ident == NULL || p->p_stat != SRUN)
335		panic("tsleep");
336#endif
337	p->p_wchan = ident;
338	p->p_wmesg = wmesg;
339	p->p_slptime = 0;
340	p->p_priority = priority & PRIMASK;
341	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
342	if (timo)
343		timeout(endtsleep, (void *)p, timo);
344	/*
345	 * We put ourselves on the sleep queue and start our timeout
346	 * before calling CURSIG, as we could stop there, and a wakeup
347	 * or a SIGCONT (or both) could occur while we were stopped.
348	 * A SIGCONT would cause us to be marked as SSLEEP
349	 * without resuming us, thus we must be ready for sleep
350	 * when CURSIG is called.  If the wakeup happens while we're
351	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
352	 */
353	if (catch) {
354		p->p_flag |= P_SINTR;
355		if ((sig = CURSIG(p))) {
356			if (p->p_wchan)
357				unsleep(p);
358			p->p_stat = SRUN;
359			goto resume;
360		}
361		if (p->p_wchan == 0) {
362			catch = 0;
363			goto resume;
364		}
365	} else
366		sig = 0;
367	p->p_stat = SSLEEP;
368	p->p_stats->p_ru.ru_nvcsw++;
369	mi_switch();
370resume:
371	curpriority = p->p_usrpri;
372	splx(s);
373	p->p_flag &= ~P_SINTR;
374	if (p->p_flag & P_TIMEOUT) {
375		p->p_flag &= ~P_TIMEOUT;
376		if (sig == 0) {
377#ifdef KTRACE
378			if (KTRPOINT(p, KTR_CSW))
379				ktrcsw(p->p_tracep, 0, 0);
380#endif
381			return (EWOULDBLOCK);
382		}
383	} else if (timo)
384		untimeout(endtsleep, (void *)p);
385	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
386#ifdef KTRACE
387		if (KTRPOINT(p, KTR_CSW))
388			ktrcsw(p->p_tracep, 0, 0);
389#endif
390		if (p->p_sigacts->ps_sigintr & sigmask(sig))
391			return (EINTR);
392		return (ERESTART);
393	}
394#ifdef KTRACE
395	if (KTRPOINT(p, KTR_CSW))
396		ktrcsw(p->p_tracep, 0, 0);
397#endif
398	return (0);
399}
400
401/*
402 * Implement timeout for tsleep.
403 * If process hasn't been awakened (wchan non-zero),
404 * set timeout flag and undo the sleep.  If proc
405 * is stopped, just unsleep so it will remain stopped.
406 */
407void
408endtsleep(arg)
409	void *arg;
410{
411	register struct proc *p;
412	int s;
413
414	p = (struct proc *)arg;
415	s = splhigh();
416	if (p->p_wchan) {
417		if (p->p_stat == SSLEEP)
418			setrunnable(p);
419		else
420			unsleep(p);
421		p->p_flag |= P_TIMEOUT;
422	}
423	splx(s);
424}
425
426/*
427 * Remove a process from its wait queue
428 */
429void
430unsleep(p)
431	register struct proc *p;
432{
433	int s;
434
435	s = splhigh();
436	if (p->p_wchan) {
437		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
438		p->p_wchan = 0;
439	}
440	splx(s);
441}
442
443/*
444 * Make all processes sleeping on the specified identifier runnable.
445 */
446void
447wakeup(ident)
448	register void *ident;
449{
450	register struct slpquehead *qp;
451	register struct proc *p;
452	int s;
453
454	s = splhigh();
455	qp = &slpque[LOOKUP(ident)];
456restart:
457	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
458#ifdef DIAGNOSTIC
459		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
460			panic("wakeup");
461#endif
462		if (p->p_wchan == ident) {
463			TAILQ_REMOVE(qp, p, p_procq);
464			p->p_wchan = 0;
465			if (p->p_stat == SSLEEP) {
466				/* OPTIMIZED EXPANSION OF setrunnable(p); */
467				if (p->p_slptime > 1)
468					updatepri(p);
469				p->p_slptime = 0;
470				p->p_stat = SRUN;
471				if (p->p_flag & P_INMEM) {
472					setrunqueue(p);
473					need_resched();
474				} else {
475					p->p_flag |= P_SWAPINREQ;
476					wakeup((caddr_t)&proc0);
477				}
478				/* END INLINE EXPANSION */
479				goto restart;
480			}
481		}
482	}
483	splx(s);
484}
485
486/*
487 * Make a process sleeping on the specified identifier runnable.
488 * May wake more than one process if a target prcoess is currently
489 * swapped out.
490 */
491void
492wakeup_one(ident)
493	register void *ident;
494{
495	register struct slpquehead *qp;
496	register struct proc *p;
497	int s;
498
499	s = splhigh();
500	qp = &slpque[LOOKUP(ident)];
501
502	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
503#ifdef DIAGNOSTIC
504		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
505			panic("wakeup_one");
506#endif
507		if (p->p_wchan == ident) {
508			TAILQ_REMOVE(qp, p, p_procq);
509			p->p_wchan = 0;
510			if (p->p_stat == SSLEEP) {
511				/* OPTIMIZED EXPANSION OF setrunnable(p); */
512				if (p->p_slptime > 1)
513					updatepri(p);
514				p->p_slptime = 0;
515				p->p_stat = SRUN;
516				if (p->p_flag & P_INMEM) {
517					setrunqueue(p);
518					need_resched();
519					break;
520				} else {
521					p->p_flag |= P_SWAPINREQ;
522					wakeup((caddr_t)&proc0);
523				}
524				/* END INLINE EXPANSION */
525			}
526		}
527	}
528	splx(s);
529}
530
531/*
532 * The machine independent parts of mi_switch().
533 * Must be called at splstatclock() or higher.
534 */
535void
536mi_switch()
537{
538	register struct proc *p = curproc;	/* XXX */
539	register struct rlimit *rlim;
540	register long s, u;
541	int x;
542	struct timeval tv;
543
544	/*
545	 * XXX this spl is almost unnecessary.  It is partly to allow for
546	 * sloppy callers that don't do it (issignal() via CURSIG() is the
547	 * main offender).  It is partly to work around a bug in the i386
548	 * cpu_switch() (the ipl is not preserved).  We ran for years
549	 * without it.  I think there was only a interrupt latency problem.
550	 * The main caller, tsleep(), does an splx() a couple of instructions
551	 * after calling here.  The buggy caller, issignal(), usually calls
552	 * here at spl0() and sometimes returns at splhigh().  The process
553	 * then runs for a little too long at splhigh().  The ipl gets fixed
554	 * when the process returns to user mode (or earlier).
555	 *
556	 * It would probably be better to always call here at spl0(). Callers
557	 * are prepared to give up control to another process, so they must
558	 * be prepared to be interrupted.  The clock stuff here may not
559	 * actually need splstatclock().
560	 */
561	x = splstatclock();
562
563#ifdef SIMPLELOCK_DEBUG
564	if (p->p_simple_locks)
565		printf("sleep: holding simple lock");
566#endif
567	/*
568	 * Compute the amount of time during which the current
569	 * process was running, and add that to its total so far.
570	 */
571	microtime(&tv);
572	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
573	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
574	if (u < 0) {
575		u += 1000000;
576		s--;
577	} else if (u >= 1000000) {
578		u -= 1000000;
579		s++;
580	}
581#ifdef SMP
582	if (s < 0)
583		s = u = 0;
584#endif
585	p->p_rtime.tv_usec = u;
586	p->p_rtime.tv_sec = s;
587
588	/*
589	 * Check if the process exceeds its cpu resource allocation.
590	 * If over max, kill it.
591	 */
592	if (p->p_stat != SZOMB) {
593		rlim = &p->p_rlimit[RLIMIT_CPU];
594		if (s >= rlim->rlim_cur) {
595			if (s >= rlim->rlim_max)
596				killproc(p, "exceeded maximum CPU limit");
597			else {
598				psignal(p, SIGXCPU);
599				if (rlim->rlim_cur < rlim->rlim_max)
600					rlim->rlim_cur += 5;
601			}
602		}
603	}
604
605	/*
606	 * Pick a new current process and record its start time.
607	 */
608	cnt.v_swtch++;
609	cpu_switch(p);
610	microtime(&runtime);
611	splx(x);
612}
613
614/*
615 * Initialize the (doubly-linked) run queues
616 * to be empty.
617 */
618/* ARGSUSED*/
619static void
620rqinit(dummy)
621	void *dummy;
622{
623	register int i;
624
625	for (i = 0; i < NQS; i++) {
626		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
627		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
628		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
629	}
630}
631
632/*
633 * Change process state to be runnable,
634 * placing it on the run queue if it is in memory,
635 * and awakening the swapper if it isn't in memory.
636 */
637void
638setrunnable(p)
639	register struct proc *p;
640{
641	register int s;
642
643	s = splhigh();
644	switch (p->p_stat) {
645	case 0:
646	case SRUN:
647	case SZOMB:
648	default:
649		panic("setrunnable");
650	case SSTOP:
651	case SSLEEP:
652		unsleep(p);		/* e.g. when sending signals */
653		break;
654
655	case SIDL:
656		break;
657	}
658	p->p_stat = SRUN;
659	if (p->p_flag & P_INMEM)
660		setrunqueue(p);
661	splx(s);
662	if (p->p_slptime > 1)
663		updatepri(p);
664	p->p_slptime = 0;
665	if ((p->p_flag & P_INMEM) == 0) {
666		p->p_flag |= P_SWAPINREQ;
667		wakeup((caddr_t)&proc0);
668	}
669	else if (p->p_priority < curpriority)
670		need_resched();
671}
672
673/*
674 * Compute the priority of a process when running in user mode.
675 * Arrange to reschedule if the resulting priority is better
676 * than that of the current process.
677 */
678void
679resetpriority(p)
680	register struct proc *p;
681{
682	register unsigned int newpriority;
683
684	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
685		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
686		newpriority = min(newpriority, MAXPRI);
687		p->p_usrpri = newpriority;
688		if (newpriority < curpriority)
689			need_resched();
690	} else {
691		need_resched();
692	}
693}
694