kern_synch.c revision 248186
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 248186 2013-03-12 06:58:49Z mav $");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/sdt.h>
56#include <sys/signalvar.h>
57#include <sys/sleepqueue.h>
58#include <sys/smp.h>
59#include <sys/sx.h>
60#include <sys/sysctl.h>
61#include <sys/sysproto.h>
62#include <sys/vmmeter.h>
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70#ifdef XEN
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/pmap.h>
74#endif
75
76#define	KTDSTATE(td)							\
77	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82
83static void synch_setup(void *dummy);
84SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85    NULL);
86
87int	hogticks;
88static uint8_t pause_wchan[MAXCPU];
89
90static struct callout loadav_callout;
91
92struct loadavg averunnable =
93	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94/*
95 * Constants for averages over 1, 5, and 15 minutes
96 * when sampling at 5 second intervals.
97 */
98static fixpt_t cexp[3] = {
99	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102};
103
104/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105static int      fscale __unused = FSCALE;
106SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107
108static void	loadav(void *arg);
109
110SDT_PROVIDER_DECLARE(sched);
111SDT_PROBE_DEFINE(sched, , , preempt, preempt);
112
113/*
114 * These probes reference Solaris features that are not implemented in FreeBSD.
115 * Create the probes anyway for compatibility with existing D scripts; they'll
116 * just never fire.
117 */
118SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
119SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
120SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
121SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
122SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
123
124void
125sleepinit(void)
126{
127
128	hogticks = (hz / 10) * 2;	/* Default only. */
129	init_sleepqueues();
130}
131
132/*
133 * General sleep call.  Suspends the current thread until a wakeup is
134 * performed on the specified identifier.  The thread will then be made
135 * runnable with the specified priority.  Sleeps at most timo/hz seconds
136 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
137 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
138 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
139 * signal becomes pending, ERESTART is returned if the current system
140 * call should be restarted if possible, and EINTR is returned if the system
141 * call should be interrupted by the signal (return EINTR).
142 *
143 * The lock argument is unlocked before the caller is suspended, and
144 * re-locked before _sleep() returns.  If priority includes the PDROP
145 * flag the lock is not re-locked before returning.
146 */
147int
148_sleep(void *ident, struct lock_object *lock, int priority,
149    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
150{
151	struct thread *td;
152	struct proc *p;
153	struct lock_class *class;
154	int catch, lock_state, pri, rval, sleepq_flags;
155	WITNESS_SAVE_DECL(lock_witness);
156
157	td = curthread;
158	p = td->td_proc;
159#ifdef KTRACE
160	if (KTRPOINT(td, KTR_CSW))
161		ktrcsw(1, 0, wmesg);
162#endif
163	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
164	    "Sleeping on \"%s\"", wmesg);
165	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
166	    ("sleeping without a lock"));
167	KASSERT(p != NULL, ("msleep1"));
168	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
169	if (priority & PDROP)
170		KASSERT(lock != NULL && lock != &Giant.lock_object,
171		    ("PDROP requires a non-Giant lock"));
172	if (lock != NULL)
173		class = LOCK_CLASS(lock);
174	else
175		class = NULL;
176
177	if (cold || SCHEDULER_STOPPED()) {
178		/*
179		 * During autoconfiguration, just return;
180		 * don't run any other threads or panic below,
181		 * in case this is the idle thread and already asleep.
182		 * XXX: this used to do "s = splhigh(); splx(safepri);
183		 * splx(s);" to give interrupts a chance, but there is
184		 * no way to give interrupts a chance now.
185		 */
186		if (lock != NULL && priority & PDROP)
187			class->lc_unlock(lock);
188		return (0);
189	}
190	catch = priority & PCATCH;
191	pri = priority & PRIMASK;
192
193	/*
194	 * If we are already on a sleep queue, then remove us from that
195	 * sleep queue first.  We have to do this to handle recursive
196	 * sleeps.
197	 */
198	if (TD_ON_SLEEPQ(td))
199		sleepq_remove(td, td->td_wchan);
200
201	if ((uint8_t *)ident >= &pause_wchan[0] &&
202	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
203		sleepq_flags = SLEEPQ_PAUSE;
204	else
205		sleepq_flags = SLEEPQ_SLEEP;
206	if (catch)
207		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
208	if (priority & PBDRY)
209		sleepq_flags |= SLEEPQ_STOP_ON_BDRY;
210
211	sleepq_lock(ident);
212	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
213	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
214
215	if (lock == &Giant.lock_object)
216		mtx_assert(&Giant, MA_OWNED);
217	DROP_GIANT();
218	if (lock != NULL && lock != &Giant.lock_object &&
219	    !(class->lc_flags & LC_SLEEPABLE)) {
220		WITNESS_SAVE(lock, lock_witness);
221		lock_state = class->lc_unlock(lock);
222	} else
223		/* GCC needs to follow the Yellow Brick Road */
224		lock_state = -1;
225
226	/*
227	 * We put ourselves on the sleep queue and start our timeout
228	 * before calling thread_suspend_check, as we could stop there,
229	 * and a wakeup or a SIGCONT (or both) could occur while we were
230	 * stopped without resuming us.  Thus, we must be ready for sleep
231	 * when cursig() is called.  If the wakeup happens while we're
232	 * stopped, then td will no longer be on a sleep queue upon
233	 * return from cursig().
234	 */
235	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
236	if (sbt != 0)
237		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
238	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
239		sleepq_release(ident);
240		WITNESS_SAVE(lock, lock_witness);
241		lock_state = class->lc_unlock(lock);
242		sleepq_lock(ident);
243	}
244	if (sbt != 0 && catch)
245		rval = sleepq_timedwait_sig(ident, pri);
246	else if (sbt != 0)
247		rval = sleepq_timedwait(ident, pri);
248	else if (catch)
249		rval = sleepq_wait_sig(ident, pri);
250	else {
251		sleepq_wait(ident, pri);
252		rval = 0;
253	}
254#ifdef KTRACE
255	if (KTRPOINT(td, KTR_CSW))
256		ktrcsw(0, 0, wmesg);
257#endif
258	PICKUP_GIANT();
259	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
260		class->lc_lock(lock, lock_state);
261		WITNESS_RESTORE(lock, lock_witness);
262	}
263	return (rval);
264}
265
266int
267msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
268    sbintime_t sbt, sbintime_t pr, int flags)
269{
270	struct thread *td;
271	struct proc *p;
272	int rval;
273	WITNESS_SAVE_DECL(mtx);
274
275	td = curthread;
276	p = td->td_proc;
277	KASSERT(mtx != NULL, ("sleeping without a mutex"));
278	KASSERT(p != NULL, ("msleep1"));
279	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
280
281	if (cold || SCHEDULER_STOPPED()) {
282		/*
283		 * During autoconfiguration, just return;
284		 * don't run any other threads or panic below,
285		 * in case this is the idle thread and already asleep.
286		 * XXX: this used to do "s = splhigh(); splx(safepri);
287		 * splx(s);" to give interrupts a chance, but there is
288		 * no way to give interrupts a chance now.
289		 */
290		return (0);
291	}
292
293	sleepq_lock(ident);
294	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
295	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
296
297	DROP_GIANT();
298	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
299	WITNESS_SAVE(&mtx->lock_object, mtx);
300	mtx_unlock_spin(mtx);
301
302	/*
303	 * We put ourselves on the sleep queue and start our timeout.
304	 */
305	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
306	if (sbt != 0)
307		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
308
309	/*
310	 * Can't call ktrace with any spin locks held so it can lock the
311	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
312	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
313	 * we handle those requests.  This is safe since we have placed our
314	 * thread on the sleep queue already.
315	 */
316#ifdef KTRACE
317	if (KTRPOINT(td, KTR_CSW)) {
318		sleepq_release(ident);
319		ktrcsw(1, 0, wmesg);
320		sleepq_lock(ident);
321	}
322#endif
323#ifdef WITNESS
324	sleepq_release(ident);
325	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
326	    wmesg);
327	sleepq_lock(ident);
328#endif
329	if (sbt != 0)
330		rval = sleepq_timedwait(ident, 0);
331	else {
332		sleepq_wait(ident, 0);
333		rval = 0;
334	}
335#ifdef KTRACE
336	if (KTRPOINT(td, KTR_CSW))
337		ktrcsw(0, 0, wmesg);
338#endif
339	PICKUP_GIANT();
340	mtx_lock_spin(mtx);
341	WITNESS_RESTORE(&mtx->lock_object, mtx);
342	return (rval);
343}
344
345/*
346 * pause() delays the calling thread by the given number of system ticks.
347 * During cold bootup, pause() uses the DELAY() function instead of
348 * the tsleep() function to do the waiting. The "timo" argument must be
349 * greater than or equal to zero. A "timo" value of zero is equivalent
350 * to a "timo" value of one.
351 */
352int
353pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
354{
355	int sbt_sec;
356
357	sbt_sec = sbintime_getsec(sbt);
358	KASSERT(sbt_sec >= 0, ("pause: timo must be >= 0"));
359
360	/* silently convert invalid timeouts */
361	if (sbt == 0)
362		sbt = tick_sbt;
363
364	if (cold) {
365		/*
366		 * We delay one second at a time to avoid overflowing the
367		 * system specific DELAY() function(s):
368		 */
369		while (sbt_sec > 0) {
370			DELAY(1000000);
371			sbt_sec--;
372		}
373		DELAY((sbt & 0xffffffff) / SBT_1US);
374		return (0);
375	}
376	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
377}
378
379/*
380 * Make all threads sleeping on the specified identifier runnable.
381 */
382void
383wakeup(void *ident)
384{
385	int wakeup_swapper;
386
387	sleepq_lock(ident);
388	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
389	sleepq_release(ident);
390	if (wakeup_swapper) {
391		KASSERT(ident != &proc0,
392		    ("wakeup and wakeup_swapper and proc0"));
393		kick_proc0();
394	}
395}
396
397/*
398 * Make a thread sleeping on the specified identifier runnable.
399 * May wake more than one thread if a target thread is currently
400 * swapped out.
401 */
402void
403wakeup_one(void *ident)
404{
405	int wakeup_swapper;
406
407	sleepq_lock(ident);
408	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
409	sleepq_release(ident);
410	if (wakeup_swapper)
411		kick_proc0();
412}
413
414static void
415kdb_switch(void)
416{
417	thread_unlock(curthread);
418	kdb_backtrace();
419	kdb_reenter();
420	panic("%s: did not reenter debugger", __func__);
421}
422
423/*
424 * The machine independent parts of context switching.
425 */
426void
427mi_switch(int flags, struct thread *newtd)
428{
429	uint64_t runtime, new_switchtime;
430	struct thread *td;
431	struct proc *p;
432
433	td = curthread;			/* XXX */
434	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
435	p = td->td_proc;		/* XXX */
436	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
437#ifdef INVARIANTS
438	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
439		mtx_assert(&Giant, MA_NOTOWNED);
440#endif
441	KASSERT(td->td_critnest == 1 || panicstr,
442	    ("mi_switch: switch in a critical section"));
443	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
444	    ("mi_switch: switch must be voluntary or involuntary"));
445	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
446
447	/*
448	 * Don't perform context switches from the debugger.
449	 */
450	if (kdb_active)
451		kdb_switch();
452	if (SCHEDULER_STOPPED())
453		return;
454	if (flags & SW_VOL) {
455		td->td_ru.ru_nvcsw++;
456		td->td_swvoltick = ticks;
457	} else
458		td->td_ru.ru_nivcsw++;
459#ifdef SCHED_STATS
460	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
461#endif
462	/*
463	 * Compute the amount of time during which the current
464	 * thread was running, and add that to its total so far.
465	 */
466	new_switchtime = cpu_ticks();
467	runtime = new_switchtime - PCPU_GET(switchtime);
468	td->td_runtime += runtime;
469	td->td_incruntime += runtime;
470	PCPU_SET(switchtime, new_switchtime);
471	td->td_generation++;	/* bump preempt-detect counter */
472	PCPU_INC(cnt.v_swtch);
473	PCPU_SET(switchticks, ticks);
474	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
475	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
476#if (KTR_COMPILE & KTR_SCHED) != 0
477	if (TD_IS_IDLETHREAD(td))
478		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
479		    "prio:%d", td->td_priority);
480	else
481		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
482		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
483		    "lockname:\"%s\"", td->td_lockname);
484#endif
485	SDT_PROBE0(sched, , , preempt);
486#ifdef XEN
487	PT_UPDATES_FLUSH();
488#endif
489	sched_switch(td, newtd, flags);
490	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
491	    "prio:%d", td->td_priority);
492
493	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
494	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
495
496	/*
497	 * If the last thread was exiting, finish cleaning it up.
498	 */
499	if ((td = PCPU_GET(deadthread))) {
500		PCPU_SET(deadthread, NULL);
501		thread_stash(td);
502	}
503}
504
505/*
506 * Change thread state to be runnable, placing it on the run queue if
507 * it is in memory.  If it is swapped out, return true so our caller
508 * will know to awaken the swapper.
509 */
510int
511setrunnable(struct thread *td)
512{
513
514	THREAD_LOCK_ASSERT(td, MA_OWNED);
515	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
516	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
517	switch (td->td_state) {
518	case TDS_RUNNING:
519	case TDS_RUNQ:
520		return (0);
521	case TDS_INHIBITED:
522		/*
523		 * If we are only inhibited because we are swapped out
524		 * then arange to swap in this process. Otherwise just return.
525		 */
526		if (td->td_inhibitors != TDI_SWAPPED)
527			return (0);
528		/* FALLTHROUGH */
529	case TDS_CAN_RUN:
530		break;
531	default:
532		printf("state is 0x%x", td->td_state);
533		panic("setrunnable(2)");
534	}
535	if ((td->td_flags & TDF_INMEM) == 0) {
536		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
537			td->td_flags |= TDF_SWAPINREQ;
538			return (1);
539		}
540	} else
541		sched_wakeup(td);
542	return (0);
543}
544
545/*
546 * Compute a tenex style load average of a quantity on
547 * 1, 5 and 15 minute intervals.
548 */
549static void
550loadav(void *arg)
551{
552	int i, nrun;
553	struct loadavg *avg;
554
555	nrun = sched_load();
556	avg = &averunnable;
557
558	for (i = 0; i < 3; i++)
559		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
560		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
561
562	/*
563	 * Schedule the next update to occur after 5 seconds, but add a
564	 * random variation to avoid synchronisation with processes that
565	 * run at regular intervals.
566	 */
567	callout_reset_sbt(&loadav_callout,
568	    tick_sbt * (hz * 4 + (int)(random() % (hz * 2 + 1))), 0,
569	    loadav, NULL, C_DIRECT_EXEC | C_HARDCLOCK);
570}
571
572/* ARGSUSED */
573static void
574synch_setup(void *dummy)
575{
576	callout_init(&loadav_callout, CALLOUT_MPSAFE);
577
578	/* Kick off timeout driven events by calling first time. */
579	loadav(NULL);
580}
581
582int
583should_yield(void)
584{
585
586	return (ticks - curthread->td_swvoltick >= hogticks);
587}
588
589void
590maybe_yield(void)
591{
592
593	if (should_yield())
594		kern_yield(PRI_USER);
595}
596
597void
598kern_yield(int prio)
599{
600	struct thread *td;
601
602	td = curthread;
603	DROP_GIANT();
604	thread_lock(td);
605	if (prio == PRI_USER)
606		prio = td->td_user_pri;
607	if (prio >= 0)
608		sched_prio(td, prio);
609	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
610	thread_unlock(td);
611	PICKUP_GIANT();
612}
613
614/*
615 * General purpose yield system call.
616 */
617int
618sys_yield(struct thread *td, struct yield_args *uap)
619{
620
621	thread_lock(td);
622	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
623		sched_prio(td, PRI_MAX_TIMESHARE);
624	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
625	thread_unlock(td);
626	td->td_retval[0] = 0;
627	return (0);
628}
629