kern_synch.c revision 235459
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 235459 2012-05-15 01:30:25Z rstone $");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/sdt.h>
56#include <sys/signalvar.h>
57#include <sys/sleepqueue.h>
58#include <sys/smp.h>
59#include <sys/sx.h>
60#include <sys/sysctl.h>
61#include <sys/sysproto.h>
62#include <sys/vmmeter.h>
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70#ifdef XEN
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/pmap.h>
74#endif
75
76#define	KTDSTATE(td)							\
77	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82
83static void synch_setup(void *dummy);
84SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85    NULL);
86
87int	hogticks;
88static int pause_wchan;
89
90static struct callout loadav_callout;
91
92struct loadavg averunnable =
93	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94/*
95 * Constants for averages over 1, 5, and 15 minutes
96 * when sampling at 5 second intervals.
97 */
98static fixpt_t cexp[3] = {
99	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102};
103
104/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105static int      fscale __unused = FSCALE;
106SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107
108static void	loadav(void *arg);
109
110SDT_PROVIDER_DECLARE(sched);
111SDT_PROBE_DEFINE(sched, , , preempt, preempt);
112
113/*
114 * These probes reference Solaris features that are not implemented in FreeBSD.
115 * Create the probes anyway for compatibility with existing D scripts; they'll
116 * just never fire.
117 */
118SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
119SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
120SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
121SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
122SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
123
124void
125sleepinit(void)
126{
127
128	hogticks = (hz / 10) * 2;	/* Default only. */
129	init_sleepqueues();
130}
131
132/*
133 * General sleep call.  Suspends the current thread until a wakeup is
134 * performed on the specified identifier.  The thread will then be made
135 * runnable with the specified priority.  Sleeps at most timo/hz seconds
136 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
137 * before and after sleeping, else signals are not checked.  Returns 0 if
138 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
139 * signal needs to be delivered, ERESTART is returned if the current system
140 * call should be restarted if possible, and EINTR is returned if the system
141 * call should be interrupted by the signal (return EINTR).
142 *
143 * The lock argument is unlocked before the caller is suspended, and
144 * re-locked before _sleep() returns.  If priority includes the PDROP
145 * flag the lock is not re-locked before returning.
146 */
147int
148_sleep(void *ident, struct lock_object *lock, int priority,
149    const char *wmesg, int timo)
150{
151	struct thread *td;
152	struct proc *p;
153	struct lock_class *class;
154	int catch, flags, lock_state, pri, rval;
155	WITNESS_SAVE_DECL(lock_witness);
156
157	td = curthread;
158	p = td->td_proc;
159#ifdef KTRACE
160	if (KTRPOINT(td, KTR_CSW))
161		ktrcsw(1, 0, wmesg);
162#endif
163	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
164	    "Sleeping on \"%s\"", wmesg);
165	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
166	    ("sleeping without a lock"));
167	KASSERT(p != NULL, ("msleep1"));
168	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
169	if (priority & PDROP)
170		KASSERT(lock != NULL && lock != &Giant.lock_object,
171		    ("PDROP requires a non-Giant lock"));
172	if (lock != NULL)
173		class = LOCK_CLASS(lock);
174	else
175		class = NULL;
176
177	if (cold || SCHEDULER_STOPPED()) {
178		/*
179		 * During autoconfiguration, just return;
180		 * don't run any other threads or panic below,
181		 * in case this is the idle thread and already asleep.
182		 * XXX: this used to do "s = splhigh(); splx(safepri);
183		 * splx(s);" to give interrupts a chance, but there is
184		 * no way to give interrupts a chance now.
185		 */
186		if (lock != NULL && priority & PDROP)
187			class->lc_unlock(lock);
188		return (0);
189	}
190	catch = priority & PCATCH;
191	pri = priority & PRIMASK;
192
193	/*
194	 * If we are already on a sleep queue, then remove us from that
195	 * sleep queue first.  We have to do this to handle recursive
196	 * sleeps.
197	 */
198	if (TD_ON_SLEEPQ(td))
199		sleepq_remove(td, td->td_wchan);
200
201	if (ident == &pause_wchan)
202		flags = SLEEPQ_PAUSE;
203	else
204		flags = SLEEPQ_SLEEP;
205	if (catch)
206		flags |= SLEEPQ_INTERRUPTIBLE;
207	if (priority & PBDRY)
208		flags |= SLEEPQ_STOP_ON_BDRY;
209
210	sleepq_lock(ident);
211	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
212	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
213
214	if (lock == &Giant.lock_object)
215		mtx_assert(&Giant, MA_OWNED);
216	DROP_GIANT();
217	if (lock != NULL && lock != &Giant.lock_object &&
218	    !(class->lc_flags & LC_SLEEPABLE)) {
219		WITNESS_SAVE(lock, lock_witness);
220		lock_state = class->lc_unlock(lock);
221	} else
222		/* GCC needs to follow the Yellow Brick Road */
223		lock_state = -1;
224
225	/*
226	 * We put ourselves on the sleep queue and start our timeout
227	 * before calling thread_suspend_check, as we could stop there,
228	 * and a wakeup or a SIGCONT (or both) could occur while we were
229	 * stopped without resuming us.  Thus, we must be ready for sleep
230	 * when cursig() is called.  If the wakeup happens while we're
231	 * stopped, then td will no longer be on a sleep queue upon
232	 * return from cursig().
233	 */
234	sleepq_add(ident, lock, wmesg, flags, 0);
235	if (timo)
236		sleepq_set_timeout(ident, timo);
237	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
238		sleepq_release(ident);
239		WITNESS_SAVE(lock, lock_witness);
240		lock_state = class->lc_unlock(lock);
241		sleepq_lock(ident);
242	}
243	if (timo && catch)
244		rval = sleepq_timedwait_sig(ident, pri);
245	else if (timo)
246		rval = sleepq_timedwait(ident, pri);
247	else if (catch)
248		rval = sleepq_wait_sig(ident, pri);
249	else {
250		sleepq_wait(ident, pri);
251		rval = 0;
252	}
253#ifdef KTRACE
254	if (KTRPOINT(td, KTR_CSW))
255		ktrcsw(0, 0, wmesg);
256#endif
257	PICKUP_GIANT();
258	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
259		class->lc_lock(lock, lock_state);
260		WITNESS_RESTORE(lock, lock_witness);
261	}
262	return (rval);
263}
264
265int
266msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
267{
268	struct thread *td;
269	struct proc *p;
270	int rval;
271	WITNESS_SAVE_DECL(mtx);
272
273	td = curthread;
274	p = td->td_proc;
275	KASSERT(mtx != NULL, ("sleeping without a mutex"));
276	KASSERT(p != NULL, ("msleep1"));
277	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
278
279	if (cold || SCHEDULER_STOPPED()) {
280		/*
281		 * During autoconfiguration, just return;
282		 * don't run any other threads or panic below,
283		 * in case this is the idle thread and already asleep.
284		 * XXX: this used to do "s = splhigh(); splx(safepri);
285		 * splx(s);" to give interrupts a chance, but there is
286		 * no way to give interrupts a chance now.
287		 */
288		return (0);
289	}
290
291	sleepq_lock(ident);
292	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
293	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
294
295	DROP_GIANT();
296	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
297	WITNESS_SAVE(&mtx->lock_object, mtx);
298	mtx_unlock_spin(mtx);
299
300	/*
301	 * We put ourselves on the sleep queue and start our timeout.
302	 */
303	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
304	if (timo)
305		sleepq_set_timeout(ident, timo);
306
307	/*
308	 * Can't call ktrace with any spin locks held so it can lock the
309	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
310	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
311	 * we handle those requests.  This is safe since we have placed our
312	 * thread on the sleep queue already.
313	 */
314#ifdef KTRACE
315	if (KTRPOINT(td, KTR_CSW)) {
316		sleepq_release(ident);
317		ktrcsw(1, 0, wmesg);
318		sleepq_lock(ident);
319	}
320#endif
321#ifdef WITNESS
322	sleepq_release(ident);
323	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
324	    wmesg);
325	sleepq_lock(ident);
326#endif
327	if (timo)
328		rval = sleepq_timedwait(ident, 0);
329	else {
330		sleepq_wait(ident, 0);
331		rval = 0;
332	}
333#ifdef KTRACE
334	if (KTRPOINT(td, KTR_CSW))
335		ktrcsw(0, 0, wmesg);
336#endif
337	PICKUP_GIANT();
338	mtx_lock_spin(mtx);
339	WITNESS_RESTORE(&mtx->lock_object, mtx);
340	return (rval);
341}
342
343/*
344 * pause() delays the calling thread by the given number of system ticks.
345 * During cold bootup, pause() uses the DELAY() function instead of
346 * the tsleep() function to do the waiting. The "timo" argument must be
347 * greater than or equal to zero. A "timo" value of zero is equivalent
348 * to a "timo" value of one.
349 */
350int
351pause(const char *wmesg, int timo)
352{
353	KASSERT(timo >= 0, ("pause: timo must be >= 0"));
354
355	/* silently convert invalid timeouts */
356	if (timo < 1)
357		timo = 1;
358
359	if (cold) {
360		/*
361		 * We delay one HZ at a time to avoid overflowing the
362		 * system specific DELAY() function(s):
363		 */
364		while (timo >= hz) {
365			DELAY(1000000);
366			timo -= hz;
367		}
368		if (timo > 0)
369			DELAY(timo * tick);
370		return (0);
371	}
372	return (tsleep(&pause_wchan, 0, wmesg, timo));
373}
374
375/*
376 * Make all threads sleeping on the specified identifier runnable.
377 */
378void
379wakeup(void *ident)
380{
381	int wakeup_swapper;
382
383	sleepq_lock(ident);
384	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
385	sleepq_release(ident);
386	if (wakeup_swapper) {
387		KASSERT(ident != &proc0,
388		    ("wakeup and wakeup_swapper and proc0"));
389		kick_proc0();
390	}
391}
392
393/*
394 * Make a thread sleeping on the specified identifier runnable.
395 * May wake more than one thread if a target thread is currently
396 * swapped out.
397 */
398void
399wakeup_one(void *ident)
400{
401	int wakeup_swapper;
402
403	sleepq_lock(ident);
404	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
405	sleepq_release(ident);
406	if (wakeup_swapper)
407		kick_proc0();
408}
409
410static void
411kdb_switch(void)
412{
413	thread_unlock(curthread);
414	kdb_backtrace();
415	kdb_reenter();
416	panic("%s: did not reenter debugger", __func__);
417}
418
419/*
420 * The machine independent parts of context switching.
421 */
422void
423mi_switch(int flags, struct thread *newtd)
424{
425	uint64_t runtime, new_switchtime;
426	struct thread *td;
427	struct proc *p;
428
429	td = curthread;			/* XXX */
430	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
431	p = td->td_proc;		/* XXX */
432	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
433#ifdef INVARIANTS
434	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
435		mtx_assert(&Giant, MA_NOTOWNED);
436#endif
437	KASSERT(td->td_critnest == 1 || panicstr,
438	    ("mi_switch: switch in a critical section"));
439	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
440	    ("mi_switch: switch must be voluntary or involuntary"));
441	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
442
443	/*
444	 * Don't perform context switches from the debugger.
445	 */
446	if (kdb_active)
447		kdb_switch();
448	if (SCHEDULER_STOPPED())
449		return;
450	if (flags & SW_VOL) {
451		td->td_ru.ru_nvcsw++;
452		td->td_swvoltick = ticks;
453	} else
454		td->td_ru.ru_nivcsw++;
455#ifdef SCHED_STATS
456	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
457#endif
458	/*
459	 * Compute the amount of time during which the current
460	 * thread was running, and add that to its total so far.
461	 */
462	new_switchtime = cpu_ticks();
463	runtime = new_switchtime - PCPU_GET(switchtime);
464	td->td_runtime += runtime;
465	td->td_incruntime += runtime;
466	PCPU_SET(switchtime, new_switchtime);
467	td->td_generation++;	/* bump preempt-detect counter */
468	PCPU_INC(cnt.v_swtch);
469	PCPU_SET(switchticks, ticks);
470	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
471	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
472#if (KTR_COMPILE & KTR_SCHED) != 0
473	if (TD_IS_IDLETHREAD(td))
474		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
475		    "prio:%d", td->td_priority);
476	else
477		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
478		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
479		    "lockname:\"%s\"", td->td_lockname);
480#endif
481	SDT_PROBE0(sched, , , preempt);
482#ifdef XEN
483	PT_UPDATES_FLUSH();
484#endif
485	sched_switch(td, newtd, flags);
486	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
487	    "prio:%d", td->td_priority);
488
489	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
490	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
491
492	/*
493	 * If the last thread was exiting, finish cleaning it up.
494	 */
495	if ((td = PCPU_GET(deadthread))) {
496		PCPU_SET(deadthread, NULL);
497		thread_stash(td);
498	}
499}
500
501/*
502 * Change thread state to be runnable, placing it on the run queue if
503 * it is in memory.  If it is swapped out, return true so our caller
504 * will know to awaken the swapper.
505 */
506int
507setrunnable(struct thread *td)
508{
509
510	THREAD_LOCK_ASSERT(td, MA_OWNED);
511	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
512	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
513	switch (td->td_state) {
514	case TDS_RUNNING:
515	case TDS_RUNQ:
516		return (0);
517	case TDS_INHIBITED:
518		/*
519		 * If we are only inhibited because we are swapped out
520		 * then arange to swap in this process. Otherwise just return.
521		 */
522		if (td->td_inhibitors != TDI_SWAPPED)
523			return (0);
524		/* FALLTHROUGH */
525	case TDS_CAN_RUN:
526		break;
527	default:
528		printf("state is 0x%x", td->td_state);
529		panic("setrunnable(2)");
530	}
531	if ((td->td_flags & TDF_INMEM) == 0) {
532		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
533			td->td_flags |= TDF_SWAPINREQ;
534			return (1);
535		}
536	} else
537		sched_wakeup(td);
538	return (0);
539}
540
541/*
542 * Compute a tenex style load average of a quantity on
543 * 1, 5 and 15 minute intervals.
544 */
545static void
546loadav(void *arg)
547{
548	int i, nrun;
549	struct loadavg *avg;
550
551	nrun = sched_load();
552	avg = &averunnable;
553
554	for (i = 0; i < 3; i++)
555		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
556		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
557
558	/*
559	 * Schedule the next update to occur after 5 seconds, but add a
560	 * random variation to avoid synchronisation with processes that
561	 * run at regular intervals.
562	 */
563	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
564	    loadav, NULL);
565}
566
567/* ARGSUSED */
568static void
569synch_setup(void *dummy)
570{
571	callout_init(&loadav_callout, CALLOUT_MPSAFE);
572
573	/* Kick off timeout driven events by calling first time. */
574	loadav(NULL);
575}
576
577int
578should_yield(void)
579{
580
581	return (ticks - curthread->td_swvoltick >= hogticks);
582}
583
584void
585maybe_yield(void)
586{
587
588	if (should_yield())
589		kern_yield(PRI_USER);
590}
591
592void
593kern_yield(int prio)
594{
595	struct thread *td;
596
597	td = curthread;
598	DROP_GIANT();
599	thread_lock(td);
600	if (prio == PRI_USER)
601		prio = td->td_user_pri;
602	if (prio >= 0)
603		sched_prio(td, prio);
604	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
605	thread_unlock(td);
606	PICKUP_GIANT();
607}
608
609/*
610 * General purpose yield system call.
611 */
612int
613sys_yield(struct thread *td, struct yield_args *uap)
614{
615
616	thread_lock(td);
617	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
618		sched_prio(td, PRI_MAX_TIMESHARE);
619	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
620	thread_unlock(td);
621	td->td_retval[0] = 0;
622	return (0);
623}
624