kern_synch.c revision 228234
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 228234 2011-12-03 15:51:15Z hselasky $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68#ifdef XEN
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#endif
73
74#define	KTDSTATE(td)							\
75	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
76	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
77	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
78	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
79	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
80
81static void synch_setup(void *dummy);
82SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
83    NULL);
84
85int	hogticks;
86static int pause_wchan;
87
88static struct callout loadav_callout;
89
90struct loadavg averunnable =
91	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
92/*
93 * Constants for averages over 1, 5, and 15 minutes
94 * when sampling at 5 second intervals.
95 */
96static fixpt_t cexp[3] = {
97	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
98	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
99	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
100};
101
102/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
103static int      fscale __unused = FSCALE;
104SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
105
106static void	loadav(void *arg);
107
108void
109sleepinit(void)
110{
111
112	hogticks = (hz / 10) * 2;	/* Default only. */
113	init_sleepqueues();
114}
115
116/*
117 * General sleep call.  Suspends the current thread until a wakeup is
118 * performed on the specified identifier.  The thread will then be made
119 * runnable with the specified priority.  Sleeps at most timo/hz seconds
120 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
121 * before and after sleeping, else signals are not checked.  Returns 0 if
122 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
123 * signal needs to be delivered, ERESTART is returned if the current system
124 * call should be restarted if possible, and EINTR is returned if the system
125 * call should be interrupted by the signal (return EINTR).
126 *
127 * The lock argument is unlocked before the caller is suspended, and
128 * re-locked before _sleep() returns.  If priority includes the PDROP
129 * flag the lock is not re-locked before returning.
130 */
131int
132_sleep(void *ident, struct lock_object *lock, int priority,
133    const char *wmesg, int timo)
134{
135	struct thread *td;
136	struct proc *p;
137	struct lock_class *class;
138	int catch, flags, lock_state, pri, rval;
139	WITNESS_SAVE_DECL(lock_witness);
140
141	td = curthread;
142	p = td->td_proc;
143#ifdef KTRACE
144	if (KTRPOINT(td, KTR_CSW))
145		ktrcsw(1, 0);
146#endif
147	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
148	    "Sleeping on \"%s\"", wmesg);
149	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
150	    ("sleeping without a lock"));
151	KASSERT(p != NULL, ("msleep1"));
152	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
153	if (priority & PDROP)
154		KASSERT(lock != NULL && lock != &Giant.lock_object,
155		    ("PDROP requires a non-Giant lock"));
156	if (lock != NULL)
157		class = LOCK_CLASS(lock);
158	else
159		class = NULL;
160
161	if (cold) {
162		/*
163		 * During autoconfiguration, just return;
164		 * don't run any other threads or panic below,
165		 * in case this is the idle thread and already asleep.
166		 * XXX: this used to do "s = splhigh(); splx(safepri);
167		 * splx(s);" to give interrupts a chance, but there is
168		 * no way to give interrupts a chance now.
169		 */
170		if (lock != NULL && priority & PDROP)
171			class->lc_unlock(lock);
172		return (0);
173	}
174	catch = priority & PCATCH;
175	pri = priority & PRIMASK;
176
177	/*
178	 * If we are already on a sleep queue, then remove us from that
179	 * sleep queue first.  We have to do this to handle recursive
180	 * sleeps.
181	 */
182	if (TD_ON_SLEEPQ(td))
183		sleepq_remove(td, td->td_wchan);
184
185	if (ident == &pause_wchan)
186		flags = SLEEPQ_PAUSE;
187	else
188		flags = SLEEPQ_SLEEP;
189	if (catch)
190		flags |= SLEEPQ_INTERRUPTIBLE;
191	if (priority & PBDRY)
192		flags |= SLEEPQ_STOP_ON_BDRY;
193
194	sleepq_lock(ident);
195	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
196	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
197
198	if (lock == &Giant.lock_object)
199		mtx_assert(&Giant, MA_OWNED);
200	DROP_GIANT();
201	if (lock != NULL && lock != &Giant.lock_object &&
202	    !(class->lc_flags & LC_SLEEPABLE)) {
203		WITNESS_SAVE(lock, lock_witness);
204		lock_state = class->lc_unlock(lock);
205	} else
206		/* GCC needs to follow the Yellow Brick Road */
207		lock_state = -1;
208
209	/*
210	 * We put ourselves on the sleep queue and start our timeout
211	 * before calling thread_suspend_check, as we could stop there,
212	 * and a wakeup or a SIGCONT (or both) could occur while we were
213	 * stopped without resuming us.  Thus, we must be ready for sleep
214	 * when cursig() is called.  If the wakeup happens while we're
215	 * stopped, then td will no longer be on a sleep queue upon
216	 * return from cursig().
217	 */
218	sleepq_add(ident, lock, wmesg, flags, 0);
219	if (timo)
220		sleepq_set_timeout(ident, timo);
221	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
222		sleepq_release(ident);
223		WITNESS_SAVE(lock, lock_witness);
224		lock_state = class->lc_unlock(lock);
225		sleepq_lock(ident);
226	}
227	if (timo && catch)
228		rval = sleepq_timedwait_sig(ident, pri);
229	else if (timo)
230		rval = sleepq_timedwait(ident, pri);
231	else if (catch)
232		rval = sleepq_wait_sig(ident, pri);
233	else {
234		sleepq_wait(ident, pri);
235		rval = 0;
236	}
237#ifdef KTRACE
238	if (KTRPOINT(td, KTR_CSW))
239		ktrcsw(0, 0);
240#endif
241	PICKUP_GIANT();
242	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
243		class->lc_lock(lock, lock_state);
244		WITNESS_RESTORE(lock, lock_witness);
245	}
246	return (rval);
247}
248
249int
250msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
251{
252	struct thread *td;
253	struct proc *p;
254	int rval;
255	WITNESS_SAVE_DECL(mtx);
256
257	td = curthread;
258	p = td->td_proc;
259	KASSERT(mtx != NULL, ("sleeping without a mutex"));
260	KASSERT(p != NULL, ("msleep1"));
261	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
262
263	if (cold) {
264		/*
265		 * During autoconfiguration, just return;
266		 * don't run any other threads or panic below,
267		 * in case this is the idle thread and already asleep.
268		 * XXX: this used to do "s = splhigh(); splx(safepri);
269		 * splx(s);" to give interrupts a chance, but there is
270		 * no way to give interrupts a chance now.
271		 */
272		return (0);
273	}
274
275	sleepq_lock(ident);
276	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
277	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
278
279	DROP_GIANT();
280	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
281	WITNESS_SAVE(&mtx->lock_object, mtx);
282	mtx_unlock_spin(mtx);
283
284	/*
285	 * We put ourselves on the sleep queue and start our timeout.
286	 */
287	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
288	if (timo)
289		sleepq_set_timeout(ident, timo);
290
291	/*
292	 * Can't call ktrace with any spin locks held so it can lock the
293	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
294	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
295	 * we handle those requests.  This is safe since we have placed our
296	 * thread on the sleep queue already.
297	 */
298#ifdef KTRACE
299	if (KTRPOINT(td, KTR_CSW)) {
300		sleepq_release(ident);
301		ktrcsw(1, 0);
302		sleepq_lock(ident);
303	}
304#endif
305#ifdef WITNESS
306	sleepq_release(ident);
307	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
308	    wmesg);
309	sleepq_lock(ident);
310#endif
311	if (timo)
312		rval = sleepq_timedwait(ident, 0);
313	else {
314		sleepq_wait(ident, 0);
315		rval = 0;
316	}
317#ifdef KTRACE
318	if (KTRPOINT(td, KTR_CSW))
319		ktrcsw(0, 0);
320#endif
321	PICKUP_GIANT();
322	mtx_lock_spin(mtx);
323	WITNESS_RESTORE(&mtx->lock_object, mtx);
324	return (rval);
325}
326
327/*
328 * pause() delays the calling thread by the given number of system ticks.
329 * During cold bootup, pause() uses the DELAY() function instead of
330 * the tsleep() function to do the waiting. The "timo" argument must be
331 * greater than or equal to zero. A "timo" value of zero is equivalent
332 * to a "timo" value of one.
333 */
334int
335pause(const char *wmesg, int timo)
336{
337	KASSERT(timo >= 0, ("pause: timo must be >= 0"));
338
339	/* silently convert invalid timeouts */
340	if (timo < 1)
341		timo = 1;
342
343	if (cold) {
344		/*
345		 * We delay one HZ at a time to avoid overflowing the
346		 * system specific DELAY() function(s):
347		 */
348		while (timo >= hz) {
349			DELAY(1000000);
350			timo -= hz;
351		}
352		if (timo > 0)
353			DELAY(timo * tick);
354		return (0);
355	}
356	return (tsleep(&pause_wchan, 0, wmesg, timo));
357}
358
359/*
360 * Make all threads sleeping on the specified identifier runnable.
361 */
362void
363wakeup(void *ident)
364{
365	int wakeup_swapper;
366
367	sleepq_lock(ident);
368	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
369	sleepq_release(ident);
370	if (wakeup_swapper) {
371		KASSERT(ident != &proc0,
372		    ("wakeup and wakeup_swapper and proc0"));
373		kick_proc0();
374	}
375}
376
377/*
378 * Make a thread sleeping on the specified identifier runnable.
379 * May wake more than one thread if a target thread is currently
380 * swapped out.
381 */
382void
383wakeup_one(void *ident)
384{
385	int wakeup_swapper;
386
387	sleepq_lock(ident);
388	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
389	sleepq_release(ident);
390	if (wakeup_swapper)
391		kick_proc0();
392}
393
394static void
395kdb_switch(void)
396{
397	thread_unlock(curthread);
398	kdb_backtrace();
399	kdb_reenter();
400	panic("%s: did not reenter debugger", __func__);
401}
402
403/*
404 * The machine independent parts of context switching.
405 */
406void
407mi_switch(int flags, struct thread *newtd)
408{
409	uint64_t runtime, new_switchtime;
410	struct thread *td;
411	struct proc *p;
412
413	td = curthread;			/* XXX */
414	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
415	p = td->td_proc;		/* XXX */
416	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
417#ifdef INVARIANTS
418	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
419		mtx_assert(&Giant, MA_NOTOWNED);
420#endif
421	KASSERT(td->td_critnest == 1 || panicstr,
422	    ("mi_switch: switch in a critical section"));
423	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
424	    ("mi_switch: switch must be voluntary or involuntary"));
425	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
426
427	/*
428	 * Don't perform context switches from the debugger.
429	 */
430	if (kdb_active)
431		kdb_switch();
432	if (flags & SW_VOL) {
433		td->td_ru.ru_nvcsw++;
434		td->td_swvoltick = ticks;
435	} else
436		td->td_ru.ru_nivcsw++;
437#ifdef SCHED_STATS
438	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
439#endif
440	/*
441	 * Compute the amount of time during which the current
442	 * thread was running, and add that to its total so far.
443	 */
444	new_switchtime = cpu_ticks();
445	runtime = new_switchtime - PCPU_GET(switchtime);
446	td->td_runtime += runtime;
447	td->td_incruntime += runtime;
448	PCPU_SET(switchtime, new_switchtime);
449	td->td_generation++;	/* bump preempt-detect counter */
450	PCPU_INC(cnt.v_swtch);
451	PCPU_SET(switchticks, ticks);
452	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
453	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
454#if (KTR_COMPILE & KTR_SCHED) != 0
455	if (TD_IS_IDLETHREAD(td))
456		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
457		    "prio:%d", td->td_priority);
458	else
459		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
460		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
461		    "lockname:\"%s\"", td->td_lockname);
462#endif
463#ifdef XEN
464	PT_UPDATES_FLUSH();
465#endif
466	sched_switch(td, newtd, flags);
467	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
468	    "prio:%d", td->td_priority);
469
470	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
471	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
472
473	/*
474	 * If the last thread was exiting, finish cleaning it up.
475	 */
476	if ((td = PCPU_GET(deadthread))) {
477		PCPU_SET(deadthread, NULL);
478		thread_stash(td);
479	}
480}
481
482/*
483 * Change thread state to be runnable, placing it on the run queue if
484 * it is in memory.  If it is swapped out, return true so our caller
485 * will know to awaken the swapper.
486 */
487int
488setrunnable(struct thread *td)
489{
490
491	THREAD_LOCK_ASSERT(td, MA_OWNED);
492	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
493	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
494	switch (td->td_state) {
495	case TDS_RUNNING:
496	case TDS_RUNQ:
497		return (0);
498	case TDS_INHIBITED:
499		/*
500		 * If we are only inhibited because we are swapped out
501		 * then arange to swap in this process. Otherwise just return.
502		 */
503		if (td->td_inhibitors != TDI_SWAPPED)
504			return (0);
505		/* FALLTHROUGH */
506	case TDS_CAN_RUN:
507		break;
508	default:
509		printf("state is 0x%x", td->td_state);
510		panic("setrunnable(2)");
511	}
512	if ((td->td_flags & TDF_INMEM) == 0) {
513		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
514			td->td_flags |= TDF_SWAPINREQ;
515			return (1);
516		}
517	} else
518		sched_wakeup(td);
519	return (0);
520}
521
522/*
523 * Compute a tenex style load average of a quantity on
524 * 1, 5 and 15 minute intervals.
525 */
526static void
527loadav(void *arg)
528{
529	int i, nrun;
530	struct loadavg *avg;
531
532	nrun = sched_load();
533	avg = &averunnable;
534
535	for (i = 0; i < 3; i++)
536		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
537		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
538
539	/*
540	 * Schedule the next update to occur after 5 seconds, but add a
541	 * random variation to avoid synchronisation with processes that
542	 * run at regular intervals.
543	 */
544	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
545	    loadav, NULL);
546}
547
548/* ARGSUSED */
549static void
550synch_setup(void *dummy)
551{
552	callout_init(&loadav_callout, CALLOUT_MPSAFE);
553
554	/* Kick off timeout driven events by calling first time. */
555	loadav(NULL);
556}
557
558int
559should_yield(void)
560{
561
562	return (ticks - curthread->td_swvoltick >= hogticks);
563}
564
565void
566maybe_yield(void)
567{
568
569	if (should_yield())
570		kern_yield(PRI_USER);
571}
572
573void
574kern_yield(int prio)
575{
576	struct thread *td;
577
578	td = curthread;
579	DROP_GIANT();
580	thread_lock(td);
581	if (prio == PRI_USER)
582		prio = td->td_user_pri;
583	if (prio >= 0)
584		sched_prio(td, prio);
585	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
586	thread_unlock(td);
587	PICKUP_GIANT();
588}
589
590/*
591 * General purpose yield system call.
592 */
593int
594sys_yield(struct thread *td, struct yield_args *uap)
595{
596
597	thread_lock(td);
598	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
599		sched_prio(td, PRI_MAX_TIMESHARE);
600	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
601	thread_unlock(td);
602	td->td_retval[0] = 0;
603	return (0);
604}
605