kern_synch.c revision 195700
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 195700 2009-07-14 22:50:41Z kib $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68#ifdef XEN
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#endif
73
74#define	KTDSTATE(td)							\
75	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
76	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
77	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
78	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
79	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
80
81static void synch_setup(void *dummy);
82SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
83    NULL);
84
85int	hogticks;
86static int pause_wchan;
87
88static struct callout loadav_callout;
89
90struct loadavg averunnable =
91	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
92/*
93 * Constants for averages over 1, 5, and 15 minutes
94 * when sampling at 5 second intervals.
95 */
96static fixpt_t cexp[3] = {
97	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
98	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
99	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
100};
101
102/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
103static int      fscale __unused = FSCALE;
104SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
105
106static void	loadav(void *arg);
107
108void
109sleepinit(void)
110{
111
112	hogticks = (hz / 10) * 2;	/* Default only. */
113	init_sleepqueues();
114}
115
116/*
117 * General sleep call.  Suspends the current thread until a wakeup is
118 * performed on the specified identifier.  The thread will then be made
119 * runnable with the specified priority.  Sleeps at most timo/hz seconds
120 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
121 * before and after sleeping, else signals are not checked.  Returns 0 if
122 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
123 * signal needs to be delivered, ERESTART is returned if the current system
124 * call should be restarted if possible, and EINTR is returned if the system
125 * call should be interrupted by the signal (return EINTR).
126 *
127 * The lock argument is unlocked before the caller is suspended, and
128 * re-locked before _sleep() returns.  If priority includes the PDROP
129 * flag the lock is not re-locked before returning.
130 */
131int
132_sleep(void *ident, struct lock_object *lock, int priority,
133    const char *wmesg, int timo)
134{
135	struct thread *td;
136	struct proc *p;
137	struct lock_class *class;
138	int catch, flags, lock_state, pri, rval;
139	WITNESS_SAVE_DECL(lock_witness);
140
141	td = curthread;
142	p = td->td_proc;
143#ifdef KTRACE
144	if (KTRPOINT(td, KTR_CSW))
145		ktrcsw(1, 0);
146#endif
147	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
148	    "Sleeping on \"%s\"", wmesg);
149	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
150	    ("sleeping without a lock"));
151	KASSERT(p != NULL, ("msleep1"));
152	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
153	if (priority & PDROP)
154		KASSERT(lock != NULL && lock != &Giant.lock_object,
155		    ("PDROP requires a non-Giant lock"));
156	if (lock != NULL)
157		class = LOCK_CLASS(lock);
158	else
159		class = NULL;
160
161	if (cold) {
162		/*
163		 * During autoconfiguration, just return;
164		 * don't run any other threads or panic below,
165		 * in case this is the idle thread and already asleep.
166		 * XXX: this used to do "s = splhigh(); splx(safepri);
167		 * splx(s);" to give interrupts a chance, but there is
168		 * no way to give interrupts a chance now.
169		 */
170		if (lock != NULL && priority & PDROP)
171			class->lc_unlock(lock);
172		return (0);
173	}
174	catch = priority & PCATCH;
175	pri = priority & PRIMASK;
176
177	/*
178	 * If we are already on a sleep queue, then remove us from that
179	 * sleep queue first.  We have to do this to handle recursive
180	 * sleeps.
181	 */
182	if (TD_ON_SLEEPQ(td))
183		sleepq_remove(td, td->td_wchan);
184
185	if (ident == &pause_wchan)
186		flags = SLEEPQ_PAUSE;
187	else
188		flags = SLEEPQ_SLEEP;
189	if (catch)
190		flags |= SLEEPQ_INTERRUPTIBLE;
191
192	sleepq_lock(ident);
193	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
194	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
195
196	if (lock == &Giant.lock_object)
197		mtx_assert(&Giant, MA_OWNED);
198	DROP_GIANT();
199	if (lock != NULL && lock != &Giant.lock_object &&
200	    !(class->lc_flags & LC_SLEEPABLE)) {
201		WITNESS_SAVE(lock, lock_witness);
202		lock_state = class->lc_unlock(lock);
203	} else
204		/* GCC needs to follow the Yellow Brick Road */
205		lock_state = -1;
206
207	/*
208	 * We put ourselves on the sleep queue and start our timeout
209	 * before calling thread_suspend_check, as we could stop there,
210	 * and a wakeup or a SIGCONT (or both) could occur while we were
211	 * stopped without resuming us.  Thus, we must be ready for sleep
212	 * when cursig() is called.  If the wakeup happens while we're
213	 * stopped, then td will no longer be on a sleep queue upon
214	 * return from cursig().
215	 */
216	sleepq_add(ident, lock, wmesg, flags, 0);
217	if (timo)
218		sleepq_set_timeout(ident, timo);
219	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
220		sleepq_release(ident);
221		WITNESS_SAVE(lock, lock_witness);
222		lock_state = class->lc_unlock(lock);
223		sleepq_lock(ident);
224	}
225	if (timo && catch)
226		rval = sleepq_timedwait_sig(ident, pri);
227	else if (timo)
228		rval = sleepq_timedwait(ident, pri);
229	else if (catch)
230		rval = sleepq_wait_sig(ident, pri);
231	else {
232		sleepq_wait(ident, pri);
233		rval = 0;
234	}
235#ifdef KTRACE
236	if (KTRPOINT(td, KTR_CSW))
237		ktrcsw(0, 0);
238#endif
239	PICKUP_GIANT();
240	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
241		class->lc_lock(lock, lock_state);
242		WITNESS_RESTORE(lock, lock_witness);
243	}
244	return (rval);
245}
246
247int
248msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
249{
250	struct thread *td;
251	struct proc *p;
252	int rval;
253	WITNESS_SAVE_DECL(mtx);
254
255	td = curthread;
256	p = td->td_proc;
257	KASSERT(mtx != NULL, ("sleeping without a mutex"));
258	KASSERT(p != NULL, ("msleep1"));
259	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
260
261	if (cold) {
262		/*
263		 * During autoconfiguration, just return;
264		 * don't run any other threads or panic below,
265		 * in case this is the idle thread and already asleep.
266		 * XXX: this used to do "s = splhigh(); splx(safepri);
267		 * splx(s);" to give interrupts a chance, but there is
268		 * no way to give interrupts a chance now.
269		 */
270		return (0);
271	}
272
273	sleepq_lock(ident);
274	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
275	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
276
277	DROP_GIANT();
278	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
279	WITNESS_SAVE(&mtx->lock_object, mtx);
280	mtx_unlock_spin(mtx);
281
282	/*
283	 * We put ourselves on the sleep queue and start our timeout.
284	 */
285	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
286	if (timo)
287		sleepq_set_timeout(ident, timo);
288
289	/*
290	 * Can't call ktrace with any spin locks held so it can lock the
291	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
292	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
293	 * we handle those requests.  This is safe since we have placed our
294	 * thread on the sleep queue already.
295	 */
296#ifdef KTRACE
297	if (KTRPOINT(td, KTR_CSW)) {
298		sleepq_release(ident);
299		ktrcsw(1, 0);
300		sleepq_lock(ident);
301	}
302#endif
303#ifdef WITNESS
304	sleepq_release(ident);
305	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
306	    wmesg);
307	sleepq_lock(ident);
308#endif
309	if (timo)
310		rval = sleepq_timedwait(ident, 0);
311	else {
312		sleepq_wait(ident, 0);
313		rval = 0;
314	}
315#ifdef KTRACE
316	if (KTRPOINT(td, KTR_CSW))
317		ktrcsw(0, 0);
318#endif
319	PICKUP_GIANT();
320	mtx_lock_spin(mtx);
321	WITNESS_RESTORE(&mtx->lock_object, mtx);
322	return (rval);
323}
324
325/*
326 * pause() is like tsleep() except that the intention is to not be
327 * explicitly woken up by another thread.  Instead, the current thread
328 * simply wishes to sleep until the timeout expires.  It is
329 * implemented using a dummy wait channel.
330 */
331int
332pause(const char *wmesg, int timo)
333{
334
335	KASSERT(timo != 0, ("pause: timeout required"));
336	return (tsleep(&pause_wchan, 0, wmesg, timo));
337}
338
339/*
340 * Make all threads sleeping on the specified identifier runnable.
341 */
342void
343wakeup(void *ident)
344{
345	int wakeup_swapper;
346
347	sleepq_lock(ident);
348	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
349	sleepq_release(ident);
350	if (wakeup_swapper) {
351		KASSERT(ident != &proc0,
352		    ("wakeup and wakeup_swapper and proc0"));
353		kick_proc0();
354	}
355}
356
357/*
358 * Make a thread sleeping on the specified identifier runnable.
359 * May wake more than one thread if a target thread is currently
360 * swapped out.
361 */
362void
363wakeup_one(void *ident)
364{
365	int wakeup_swapper;
366
367	sleepq_lock(ident);
368	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
369	sleepq_release(ident);
370	if (wakeup_swapper)
371		kick_proc0();
372}
373
374static void
375kdb_switch(void)
376{
377	thread_unlock(curthread);
378	kdb_backtrace();
379	kdb_reenter();
380	panic("%s: did not reenter debugger", __func__);
381}
382
383/*
384 * The machine independent parts of context switching.
385 */
386void
387mi_switch(int flags, struct thread *newtd)
388{
389	uint64_t runtime, new_switchtime;
390	struct thread *td;
391	struct proc *p;
392
393	td = curthread;			/* XXX */
394	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
395	p = td->td_proc;		/* XXX */
396	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
397#ifdef INVARIANTS
398	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
399		mtx_assert(&Giant, MA_NOTOWNED);
400#endif
401	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
402	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
403	    newtd == NULL) || panicstr,
404	    ("mi_switch: switch in a critical section"));
405	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
406	    ("mi_switch: switch must be voluntary or involuntary"));
407	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
408
409	/*
410	 * Don't perform context switches from the debugger.
411	 */
412	if (kdb_active)
413		kdb_switch();
414	if (flags & SW_VOL)
415		td->td_ru.ru_nvcsw++;
416	else
417		td->td_ru.ru_nivcsw++;
418#ifdef SCHED_STATS
419	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
420#endif
421	/*
422	 * Compute the amount of time during which the current
423	 * thread was running, and add that to its total so far.
424	 */
425	new_switchtime = cpu_ticks();
426	runtime = new_switchtime - PCPU_GET(switchtime);
427	td->td_runtime += runtime;
428	td->td_incruntime += runtime;
429	PCPU_SET(switchtime, new_switchtime);
430	td->td_generation++;	/* bump preempt-detect counter */
431	PCPU_INC(cnt.v_swtch);
432	PCPU_SET(switchticks, ticks);
433	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
434	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
435#if (KTR_COMPILE & KTR_SCHED) != 0
436	if (TD_IS_IDLETHREAD(td))
437		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
438		    "prio:%d", td->td_priority);
439	else
440		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
441		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
442		    "lockname:\"%s\"", td->td_lockname);
443#endif
444#ifdef XEN
445	PT_UPDATES_FLUSH();
446#endif
447	sched_switch(td, newtd, flags);
448	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
449	    "prio:%d", td->td_priority);
450
451	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
452	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
453
454	/*
455	 * If the last thread was exiting, finish cleaning it up.
456	 */
457	if ((td = PCPU_GET(deadthread))) {
458		PCPU_SET(deadthread, NULL);
459		thread_stash(td);
460	}
461}
462
463/*
464 * Change thread state to be runnable, placing it on the run queue if
465 * it is in memory.  If it is swapped out, return true so our caller
466 * will know to awaken the swapper.
467 */
468int
469setrunnable(struct thread *td)
470{
471
472	THREAD_LOCK_ASSERT(td, MA_OWNED);
473	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
474	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
475	switch (td->td_state) {
476	case TDS_RUNNING:
477	case TDS_RUNQ:
478		return (0);
479	case TDS_INHIBITED:
480		/*
481		 * If we are only inhibited because we are swapped out
482		 * then arange to swap in this process. Otherwise just return.
483		 */
484		if (td->td_inhibitors != TDI_SWAPPED)
485			return (0);
486		/* FALLTHROUGH */
487	case TDS_CAN_RUN:
488		break;
489	default:
490		printf("state is 0x%x", td->td_state);
491		panic("setrunnable(2)");
492	}
493	if ((td->td_flags & TDF_INMEM) == 0) {
494		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
495			td->td_flags |= TDF_SWAPINREQ;
496			return (1);
497		}
498	} else
499		sched_wakeup(td);
500	return (0);
501}
502
503/*
504 * Compute a tenex style load average of a quantity on
505 * 1, 5 and 15 minute intervals.
506 */
507static void
508loadav(void *arg)
509{
510	int i, nrun;
511	struct loadavg *avg;
512
513	nrun = sched_load();
514	avg = &averunnable;
515
516	for (i = 0; i < 3; i++)
517		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
518		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
519
520	/*
521	 * Schedule the next update to occur after 5 seconds, but add a
522	 * random variation to avoid synchronisation with processes that
523	 * run at regular intervals.
524	 */
525	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
526	    loadav, NULL);
527}
528
529/* ARGSUSED */
530static void
531synch_setup(void *dummy)
532{
533	callout_init(&loadav_callout, CALLOUT_MPSAFE);
534
535	/* Kick off timeout driven events by calling first time. */
536	loadav(NULL);
537}
538
539/*
540 * General purpose yield system call.
541 */
542int
543yield(struct thread *td, struct yield_args *uap)
544{
545
546	thread_lock(td);
547	sched_prio(td, PRI_MAX_TIMESHARE);
548	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
549	thread_unlock(td);
550	td->td_retval[0] = 0;
551	return (0);
552}
553