kern_synch.c revision 187357
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 187357 2009-01-17 07:17:57Z jeff $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68#ifdef XEN
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#endif
73
74#define	KTDSTATE(td)							\
75	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
76	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
77	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
78	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
79	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
80
81static void synch_setup(void *dummy);
82SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
83    NULL);
84
85int	hogticks;
86static int pause_wchan;
87
88static struct callout loadav_callout;
89
90struct loadavg averunnable =
91	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
92/*
93 * Constants for averages over 1, 5, and 15 minutes
94 * when sampling at 5 second intervals.
95 */
96static fixpt_t cexp[3] = {
97	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
98	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
99	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
100};
101
102/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
103static int      fscale __unused = FSCALE;
104SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
105
106static void	loadav(void *arg);
107
108void
109sleepinit(void)
110{
111
112	hogticks = (hz / 10) * 2;	/* Default only. */
113	init_sleepqueues();
114}
115
116/*
117 * General sleep call.  Suspends the current thread until a wakeup is
118 * performed on the specified identifier.  The thread will then be made
119 * runnable with the specified priority.  Sleeps at most timo/hz seconds
120 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
121 * before and after sleeping, else signals are not checked.  Returns 0 if
122 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
123 * signal needs to be delivered, ERESTART is returned if the current system
124 * call should be restarted if possible, and EINTR is returned if the system
125 * call should be interrupted by the signal (return EINTR).
126 *
127 * The lock argument is unlocked before the caller is suspended, and
128 * re-locked before _sleep() returns.  If priority includes the PDROP
129 * flag the lock is not re-locked before returning.
130 */
131int
132_sleep(void *ident, struct lock_object *lock, int priority,
133    const char *wmesg, int timo)
134{
135	struct thread *td;
136	struct proc *p;
137	struct lock_class *class;
138	int catch, flags, lock_state, pri, rval;
139	WITNESS_SAVE_DECL(lock_witness);
140
141	td = curthread;
142	p = td->td_proc;
143#ifdef KTRACE
144	if (KTRPOINT(td, KTR_CSW))
145		ktrcsw(1, 0);
146#endif
147	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
148	    "Sleeping on \"%s\"", wmesg);
149	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
150	    ("sleeping without a lock"));
151	KASSERT(p != NULL, ("msleep1"));
152	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
153	if (priority & PDROP)
154		KASSERT(lock != NULL && lock != &Giant.lock_object,
155		    ("PDROP requires a non-Giant lock"));
156	if (lock != NULL)
157		class = LOCK_CLASS(lock);
158	else
159		class = NULL;
160
161	if (cold) {
162		/*
163		 * During autoconfiguration, just return;
164		 * don't run any other threads or panic below,
165		 * in case this is the idle thread and already asleep.
166		 * XXX: this used to do "s = splhigh(); splx(safepri);
167		 * splx(s);" to give interrupts a chance, but there is
168		 * no way to give interrupts a chance now.
169		 */
170		if (lock != NULL && priority & PDROP)
171			class->lc_unlock(lock);
172		return (0);
173	}
174	catch = priority & PCATCH;
175	pri = priority & PRIMASK;
176	rval = 0;
177
178	/*
179	 * If we are already on a sleep queue, then remove us from that
180	 * sleep queue first.  We have to do this to handle recursive
181	 * sleeps.
182	 */
183	if (TD_ON_SLEEPQ(td))
184		sleepq_remove(td, td->td_wchan);
185
186	if (ident == &pause_wchan)
187		flags = SLEEPQ_PAUSE;
188	else
189		flags = SLEEPQ_SLEEP;
190	if (catch)
191		flags |= SLEEPQ_INTERRUPTIBLE;
192
193	sleepq_lock(ident);
194	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
195	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
196
197	if (lock == &Giant.lock_object)
198		mtx_assert(&Giant, MA_OWNED);
199	DROP_GIANT();
200	if (lock != NULL && lock != &Giant.lock_object &&
201	    !(class->lc_flags & LC_SLEEPABLE)) {
202		WITNESS_SAVE(lock, lock_witness);
203		lock_state = class->lc_unlock(lock);
204	} else
205		/* GCC needs to follow the Yellow Brick Road */
206		lock_state = -1;
207
208	/*
209	 * We put ourselves on the sleep queue and start our timeout
210	 * before calling thread_suspend_check, as we could stop there,
211	 * and a wakeup or a SIGCONT (or both) could occur while we were
212	 * stopped without resuming us.  Thus, we must be ready for sleep
213	 * when cursig() is called.  If the wakeup happens while we're
214	 * stopped, then td will no longer be on a sleep queue upon
215	 * return from cursig().
216	 */
217	sleepq_add(ident, lock, wmesg, flags, 0);
218	if (timo)
219		sleepq_set_timeout(ident, timo);
220	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
221		sleepq_release(ident);
222		WITNESS_SAVE(lock, lock_witness);
223		lock_state = class->lc_unlock(lock);
224		sleepq_lock(ident);
225	}
226	if (timo && catch)
227		rval = sleepq_timedwait_sig(ident, pri);
228	else if (timo)
229		rval = sleepq_timedwait(ident, pri);
230	else if (catch)
231		rval = sleepq_wait_sig(ident, pri);
232	else {
233		sleepq_wait(ident, pri);
234		rval = 0;
235	}
236#ifdef KTRACE
237	if (KTRPOINT(td, KTR_CSW))
238		ktrcsw(0, 0);
239#endif
240	PICKUP_GIANT();
241	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
242		class->lc_lock(lock, lock_state);
243		WITNESS_RESTORE(lock, lock_witness);
244	}
245	return (rval);
246}
247
248int
249msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
250{
251	struct thread *td;
252	struct proc *p;
253	int rval;
254	WITNESS_SAVE_DECL(mtx);
255
256	td = curthread;
257	p = td->td_proc;
258	KASSERT(mtx != NULL, ("sleeping without a mutex"));
259	KASSERT(p != NULL, ("msleep1"));
260	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
261
262	if (cold) {
263		/*
264		 * During autoconfiguration, just return;
265		 * don't run any other threads or panic below,
266		 * in case this is the idle thread and already asleep.
267		 * XXX: this used to do "s = splhigh(); splx(safepri);
268		 * splx(s);" to give interrupts a chance, but there is
269		 * no way to give interrupts a chance now.
270		 */
271		return (0);
272	}
273
274	sleepq_lock(ident);
275	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
276	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
277
278	DROP_GIANT();
279	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
280	WITNESS_SAVE(&mtx->lock_object, mtx);
281	mtx_unlock_spin(mtx);
282
283	/*
284	 * We put ourselves on the sleep queue and start our timeout.
285	 */
286	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
287	if (timo)
288		sleepq_set_timeout(ident, timo);
289
290	/*
291	 * Can't call ktrace with any spin locks held so it can lock the
292	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
293	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
294	 * we handle those requests.  This is safe since we have placed our
295	 * thread on the sleep queue already.
296	 */
297#ifdef KTRACE
298	if (KTRPOINT(td, KTR_CSW)) {
299		sleepq_release(ident);
300		ktrcsw(1, 0);
301		sleepq_lock(ident);
302	}
303#endif
304#ifdef WITNESS
305	sleepq_release(ident);
306	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
307	    wmesg);
308	sleepq_lock(ident);
309#endif
310	if (timo)
311		rval = sleepq_timedwait(ident, 0);
312	else {
313		sleepq_wait(ident, 0);
314		rval = 0;
315	}
316#ifdef KTRACE
317	if (KTRPOINT(td, KTR_CSW))
318		ktrcsw(0, 0);
319#endif
320	PICKUP_GIANT();
321	mtx_lock_spin(mtx);
322	WITNESS_RESTORE(&mtx->lock_object, mtx);
323	return (rval);
324}
325
326/*
327 * pause() is like tsleep() except that the intention is to not be
328 * explicitly woken up by another thread.  Instead, the current thread
329 * simply wishes to sleep until the timeout expires.  It is
330 * implemented using a dummy wait channel.
331 */
332int
333pause(const char *wmesg, int timo)
334{
335
336	KASSERT(timo != 0, ("pause: timeout required"));
337	return (tsleep(&pause_wchan, 0, wmesg, timo));
338}
339
340/*
341 * Make all threads sleeping on the specified identifier runnable.
342 */
343void
344wakeup(void *ident)
345{
346	int wakeup_swapper;
347
348	sleepq_lock(ident);
349	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
350	sleepq_release(ident);
351	if (wakeup_swapper)
352		kick_proc0();
353}
354
355/*
356 * Make a thread sleeping on the specified identifier runnable.
357 * May wake more than one thread if a target thread is currently
358 * swapped out.
359 */
360void
361wakeup_one(void *ident)
362{
363	int wakeup_swapper;
364
365	sleepq_lock(ident);
366	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
367	sleepq_release(ident);
368	if (wakeup_swapper)
369		kick_proc0();
370}
371
372static void
373kdb_switch(void)
374{
375	thread_unlock(curthread);
376	kdb_backtrace();
377	kdb_reenter();
378	panic("%s: did not reenter debugger", __func__);
379}
380
381/*
382 * The machine independent parts of context switching.
383 */
384void
385mi_switch(int flags, struct thread *newtd)
386{
387	uint64_t runtime, new_switchtime;
388	struct thread *td;
389	struct proc *p;
390
391	td = curthread;			/* XXX */
392	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
393	p = td->td_proc;		/* XXX */
394	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
395#ifdef INVARIANTS
396	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
397		mtx_assert(&Giant, MA_NOTOWNED);
398#endif
399	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
400	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
401	    newtd == NULL) || panicstr,
402	    ("mi_switch: switch in a critical section"));
403	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
404	    ("mi_switch: switch must be voluntary or involuntary"));
405	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
406
407	/*
408	 * Don't perform context switches from the debugger.
409	 */
410	if (kdb_active)
411		kdb_switch();
412	if (flags & SW_VOL)
413		td->td_ru.ru_nvcsw++;
414	else
415		td->td_ru.ru_nivcsw++;
416#ifdef SCHED_STATS
417	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
418#endif
419	/*
420	 * Compute the amount of time during which the current
421	 * thread was running, and add that to its total so far.
422	 */
423	new_switchtime = cpu_ticks();
424	runtime = new_switchtime - PCPU_GET(switchtime);
425	td->td_runtime += runtime;
426	td->td_incruntime += runtime;
427	PCPU_SET(switchtime, new_switchtime);
428	td->td_generation++;	/* bump preempt-detect counter */
429	PCPU_INC(cnt.v_swtch);
430	PCPU_SET(switchticks, ticks);
431	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
432	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
433#if (KTR_COMPILE & KTR_SCHED) != 0
434	if (TD_IS_IDLETHREAD(td))
435		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
436		    "prio:%d", td->td_priority);
437	else
438		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
439		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
440		    "lockname:\"%s\"", td->td_lockname);
441#endif
442#ifdef XEN
443	PT_UPDATES_FLUSH();
444#endif
445	sched_switch(td, newtd, flags);
446	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
447	    "prio:%d", td->td_priority);
448
449	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
450	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
451
452	/*
453	 * If the last thread was exiting, finish cleaning it up.
454	 */
455	if ((td = PCPU_GET(deadthread))) {
456		PCPU_SET(deadthread, NULL);
457		thread_stash(td);
458	}
459}
460
461/*
462 * Change thread state to be runnable, placing it on the run queue if
463 * it is in memory.  If it is swapped out, return true so our caller
464 * will know to awaken the swapper.
465 */
466int
467setrunnable(struct thread *td)
468{
469
470	THREAD_LOCK_ASSERT(td, MA_OWNED);
471	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
472	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
473	switch (td->td_state) {
474	case TDS_RUNNING:
475	case TDS_RUNQ:
476		return (0);
477	case TDS_INHIBITED:
478		/*
479		 * If we are only inhibited because we are swapped out
480		 * then arange to swap in this process. Otherwise just return.
481		 */
482		if (td->td_inhibitors != TDI_SWAPPED)
483			return (0);
484		/* FALLTHROUGH */
485	case TDS_CAN_RUN:
486		break;
487	default:
488		printf("state is 0x%x", td->td_state);
489		panic("setrunnable(2)");
490	}
491	if ((td->td_flags & TDF_INMEM) == 0) {
492		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
493			td->td_flags |= TDF_SWAPINREQ;
494			return (1);
495		}
496	} else
497		sched_wakeup(td);
498	return (0);
499}
500
501/*
502 * Compute a tenex style load average of a quantity on
503 * 1, 5 and 15 minute intervals.
504 */
505static void
506loadav(void *arg)
507{
508	int i, nrun;
509	struct loadavg *avg;
510
511	nrun = sched_load();
512	avg = &averunnable;
513
514	for (i = 0; i < 3; i++)
515		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
516		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
517
518	/*
519	 * Schedule the next update to occur after 5 seconds, but add a
520	 * random variation to avoid synchronisation with processes that
521	 * run at regular intervals.
522	 */
523	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
524	    loadav, NULL);
525}
526
527/* ARGSUSED */
528static void
529synch_setup(void *dummy)
530{
531	callout_init(&loadav_callout, CALLOUT_MPSAFE);
532
533	/* Kick off timeout driven events by calling first time. */
534	loadav(NULL);
535}
536
537/*
538 * General purpose yield system call.
539 */
540int
541yield(struct thread *td, struct yield_args *uap)
542{
543
544	thread_lock(td);
545	sched_prio(td, PRI_MAX_TIMESHARE);
546	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
547	thread_unlock(td);
548	td->td_retval[0] = 0;
549	return (0);
550}
551