kern_synch.c revision 183352
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 183352 2008-09-25 13:42:19Z jhb $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void synch_setup(void *dummy);
69SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70    NULL);
71
72int	hogticks;
73static int pause_wchan;
74
75static struct callout loadav_callout;
76
77struct loadavg averunnable =
78	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79/*
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
82 */
83static fixpt_t cexp[3] = {
84	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87};
88
89/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90static int      fscale __unused = FSCALE;
91SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92
93static void	loadav(void *arg);
94
95void
96sleepinit(void)
97{
98
99	hogticks = (hz / 10) * 2;	/* Default only. */
100	init_sleepqueues();
101}
102
103/*
104 * General sleep call.  Suspends the current thread until a wakeup is
105 * performed on the specified identifier.  The thread will then be made
106 * runnable with the specified priority.  Sleeps at most timo/hz seconds
107 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked.  Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
113 *
114 * The lock argument is unlocked before the caller is suspended, and
115 * re-locked before _sleep() returns.  If priority includes the PDROP
116 * flag the lock is not re-locked before returning.
117 */
118int
119_sleep(void *ident, struct lock_object *lock, int priority,
120    const char *wmesg, int timo)
121{
122	struct thread *td;
123	struct proc *p;
124	struct lock_class *class;
125	int catch, flags, lock_state, pri, rval;
126	WITNESS_SAVE_DECL(lock_witness);
127
128	td = curthread;
129	p = td->td_proc;
130#ifdef KTRACE
131	if (KTRPOINT(td, KTR_CSW))
132		ktrcsw(1, 0);
133#endif
134	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
135	    "Sleeping on \"%s\"", wmesg);
136	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
137	    ("sleeping without a lock"));
138	KASSERT(p != NULL, ("msleep1"));
139	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
140	if (priority & PDROP)
141		KASSERT(lock != NULL && lock != &Giant.lock_object,
142		    ("PDROP requires a non-Giant lock"));
143	if (lock != NULL)
144		class = LOCK_CLASS(lock);
145	else
146		class = NULL;
147
148	if (cold) {
149		/*
150		 * During autoconfiguration, just return;
151		 * don't run any other threads or panic below,
152		 * in case this is the idle thread and already asleep.
153		 * XXX: this used to do "s = splhigh(); splx(safepri);
154		 * splx(s);" to give interrupts a chance, but there is
155		 * no way to give interrupts a chance now.
156		 */
157		if (lock != NULL && priority & PDROP)
158			class->lc_unlock(lock);
159		return (0);
160	}
161	catch = priority & PCATCH;
162	pri = priority & PRIMASK;
163	rval = 0;
164
165	/*
166	 * If we are already on a sleep queue, then remove us from that
167	 * sleep queue first.  We have to do this to handle recursive
168	 * sleeps.
169	 */
170	if (TD_ON_SLEEPQ(td))
171		sleepq_remove(td, td->td_wchan);
172
173	if (ident == &pause_wchan)
174		flags = SLEEPQ_PAUSE;
175	else
176		flags = SLEEPQ_SLEEP;
177	if (catch)
178		flags |= SLEEPQ_INTERRUPTIBLE;
179
180	sleepq_lock(ident);
181	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
183
184	if (lock == &Giant.lock_object)
185		mtx_assert(&Giant, MA_OWNED);
186	DROP_GIANT();
187	if (lock != NULL && lock != &Giant.lock_object &&
188	    !(class->lc_flags & LC_SLEEPABLE)) {
189		WITNESS_SAVE(lock, lock_witness);
190		lock_state = class->lc_unlock(lock);
191	} else
192		/* GCC needs to follow the Yellow Brick Road */
193		lock_state = -1;
194
195	/*
196	 * We put ourselves on the sleep queue and start our timeout
197	 * before calling thread_suspend_check, as we could stop there,
198	 * and a wakeup or a SIGCONT (or both) could occur while we were
199	 * stopped without resuming us.  Thus, we must be ready for sleep
200	 * when cursig() is called.  If the wakeup happens while we're
201	 * stopped, then td will no longer be on a sleep queue upon
202	 * return from cursig().
203	 */
204	sleepq_add(ident, lock, wmesg, flags, 0);
205	if (timo)
206		sleepq_set_timeout(ident, timo);
207	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
208		sleepq_release(ident);
209		WITNESS_SAVE(lock, lock_witness);
210		lock_state = class->lc_unlock(lock);
211		sleepq_lock(ident);
212	}
213	if (timo && catch)
214		rval = sleepq_timedwait_sig(ident, pri);
215	else if (timo)
216		rval = sleepq_timedwait(ident, pri);
217	else if (catch)
218		rval = sleepq_wait_sig(ident, pri);
219	else {
220		sleepq_wait(ident, pri);
221		rval = 0;
222	}
223#ifdef KTRACE
224	if (KTRPOINT(td, KTR_CSW))
225		ktrcsw(0, 0);
226#endif
227	PICKUP_GIANT();
228	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
229		class->lc_lock(lock, lock_state);
230		WITNESS_RESTORE(lock, lock_witness);
231	}
232	return (rval);
233}
234
235int
236msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
237{
238	struct thread *td;
239	struct proc *p;
240	int rval;
241	WITNESS_SAVE_DECL(mtx);
242
243	td = curthread;
244	p = td->td_proc;
245	KASSERT(mtx != NULL, ("sleeping without a mutex"));
246	KASSERT(p != NULL, ("msleep1"));
247	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
248
249	if (cold) {
250		/*
251		 * During autoconfiguration, just return;
252		 * don't run any other threads or panic below,
253		 * in case this is the idle thread and already asleep.
254		 * XXX: this used to do "s = splhigh(); splx(safepri);
255		 * splx(s);" to give interrupts a chance, but there is
256		 * no way to give interrupts a chance now.
257		 */
258		return (0);
259	}
260
261	sleepq_lock(ident);
262	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
263	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
264
265	DROP_GIANT();
266	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
267	WITNESS_SAVE(&mtx->lock_object, mtx);
268	mtx_unlock_spin(mtx);
269
270	/*
271	 * We put ourselves on the sleep queue and start our timeout.
272	 */
273	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
274	if (timo)
275		sleepq_set_timeout(ident, timo);
276
277	/*
278	 * Can't call ktrace with any spin locks held so it can lock the
279	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
280	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
281	 * we handle those requests.  This is safe since we have placed our
282	 * thread on the sleep queue already.
283	 */
284#ifdef KTRACE
285	if (KTRPOINT(td, KTR_CSW)) {
286		sleepq_release(ident);
287		ktrcsw(1, 0);
288		sleepq_lock(ident);
289	}
290#endif
291#ifdef WITNESS
292	sleepq_release(ident);
293	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
294	    wmesg);
295	sleepq_lock(ident);
296#endif
297	if (timo)
298		rval = sleepq_timedwait(ident, 0);
299	else {
300		sleepq_wait(ident, 0);
301		rval = 0;
302	}
303#ifdef KTRACE
304	if (KTRPOINT(td, KTR_CSW))
305		ktrcsw(0, 0);
306#endif
307	PICKUP_GIANT();
308	mtx_lock_spin(mtx);
309	WITNESS_RESTORE(&mtx->lock_object, mtx);
310	return (rval);
311}
312
313/*
314 * pause() is like tsleep() except that the intention is to not be
315 * explicitly woken up by another thread.  Instead, the current thread
316 * simply wishes to sleep until the timeout expires.  It is
317 * implemented using a dummy wait channel.
318 */
319int
320pause(const char *wmesg, int timo)
321{
322
323	KASSERT(timo != 0, ("pause: timeout required"));
324	return (tsleep(&pause_wchan, 0, wmesg, timo));
325}
326
327/*
328 * Make all threads sleeping on the specified identifier runnable.
329 */
330void
331wakeup(void *ident)
332{
333	int wakeup_swapper;
334
335	sleepq_lock(ident);
336	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
337	sleepq_release(ident);
338	if (wakeup_swapper)
339		kick_proc0();
340}
341
342/*
343 * Make a thread sleeping on the specified identifier runnable.
344 * May wake more than one thread if a target thread is currently
345 * swapped out.
346 */
347void
348wakeup_one(void *ident)
349{
350	int wakeup_swapper;
351
352	sleepq_lock(ident);
353	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
354	sleepq_release(ident);
355	if (wakeup_swapper)
356		kick_proc0();
357}
358
359static void
360kdb_switch(void)
361{
362	thread_unlock(curthread);
363	kdb_backtrace();
364	kdb_reenter();
365	panic("%s: did not reenter debugger", __func__);
366}
367
368/*
369 * The machine independent parts of context switching.
370 */
371void
372mi_switch(int flags, struct thread *newtd)
373{
374	uint64_t runtime, new_switchtime;
375	struct thread *td;
376	struct proc *p;
377
378	td = curthread;			/* XXX */
379	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
380	p = td->td_proc;		/* XXX */
381	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
382#ifdef INVARIANTS
383	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
384		mtx_assert(&Giant, MA_NOTOWNED);
385#endif
386	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
387	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
388	    newtd == NULL) || panicstr,
389	    ("mi_switch: switch in a critical section"));
390	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
391	    ("mi_switch: switch must be voluntary or involuntary"));
392	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
393
394	/*
395	 * Don't perform context switches from the debugger.
396	 */
397	if (kdb_active)
398		kdb_switch();
399	if (flags & SW_VOL)
400		td->td_ru.ru_nvcsw++;
401	else
402		td->td_ru.ru_nivcsw++;
403#ifdef SCHED_STATS
404	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
405#endif
406	/*
407	 * Compute the amount of time during which the current
408	 * thread was running, and add that to its total so far.
409	 */
410	new_switchtime = cpu_ticks();
411	runtime = new_switchtime - PCPU_GET(switchtime);
412	td->td_runtime += runtime;
413	td->td_incruntime += runtime;
414	PCPU_SET(switchtime, new_switchtime);
415	td->td_generation++;	/* bump preempt-detect counter */
416	PCPU_INC(cnt.v_swtch);
417	PCPU_SET(switchticks, ticks);
418	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
419	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
420#if (KTR_COMPILE & KTR_SCHED) != 0
421	if (TD_IS_IDLETHREAD(td))
422		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
423		    td, td->td_name, td->td_priority);
424	else if (newtd != NULL)
425		CTR5(KTR_SCHED,
426		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
427		    td, td->td_name, td->td_priority, newtd,
428		    newtd->td_name);
429	else
430		CTR6(KTR_SCHED,
431		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
432		    td, td->td_name, td->td_priority,
433		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
434#endif
435	sched_switch(td, newtd, flags);
436	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
437	    td, td->td_name, td->td_priority);
438
439	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
440	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
441
442	/*
443	 * If the last thread was exiting, finish cleaning it up.
444	 */
445	if ((td = PCPU_GET(deadthread))) {
446		PCPU_SET(deadthread, NULL);
447		thread_stash(td);
448	}
449}
450
451/*
452 * Change thread state to be runnable, placing it on the run queue if
453 * it is in memory.  If it is swapped out, return true so our caller
454 * will know to awaken the swapper.
455 */
456int
457setrunnable(struct thread *td)
458{
459
460	THREAD_LOCK_ASSERT(td, MA_OWNED);
461	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
462	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
463	switch (td->td_state) {
464	case TDS_RUNNING:
465	case TDS_RUNQ:
466		return (0);
467	case TDS_INHIBITED:
468		/*
469		 * If we are only inhibited because we are swapped out
470		 * then arange to swap in this process. Otherwise just return.
471		 */
472		if (td->td_inhibitors != TDI_SWAPPED)
473			return (0);
474		/* FALLTHROUGH */
475	case TDS_CAN_RUN:
476		break;
477	default:
478		printf("state is 0x%x", td->td_state);
479		panic("setrunnable(2)");
480	}
481	if ((td->td_flags & TDF_INMEM) == 0) {
482		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
483			td->td_flags |= TDF_SWAPINREQ;
484			return (1);
485		}
486	} else
487		sched_wakeup(td);
488	return (0);
489}
490
491/*
492 * Compute a tenex style load average of a quantity on
493 * 1, 5 and 15 minute intervals.
494 */
495static void
496loadav(void *arg)
497{
498	int i, nrun;
499	struct loadavg *avg;
500
501	nrun = sched_load();
502	avg = &averunnable;
503
504	for (i = 0; i < 3; i++)
505		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
506		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
507
508	/*
509	 * Schedule the next update to occur after 5 seconds, but add a
510	 * random variation to avoid synchronisation with processes that
511	 * run at regular intervals.
512	 */
513	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
514	    loadav, NULL);
515}
516
517/* ARGSUSED */
518static void
519synch_setup(void *dummy)
520{
521	callout_init(&loadav_callout, CALLOUT_MPSAFE);
522
523	/* Kick off timeout driven events by calling first time. */
524	loadav(NULL);
525}
526
527/*
528 * General purpose yield system call.
529 */
530int
531yield(struct thread *td, struct yield_args *uap)
532{
533
534	thread_lock(td);
535	sched_prio(td, PRI_MAX_TIMESHARE);
536	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
537	thread_unlock(td);
538	td->td_retval[0] = 0;
539	return (0);
540}
541