kern_synch.c revision 181394
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 181394 2008-08-07 21:00:13Z jhb $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void synch_setup(void *dummy);
69SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70    NULL);
71
72int	hogticks;
73int	lbolt;
74static int pause_wchan;
75
76static struct callout loadav_callout;
77static struct callout lbolt_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
92static int      fscale __unused = FSCALE;
93SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
94
95static void	loadav(void *arg);
96static void	lboltcb(void *arg);
97
98void
99sleepinit(void)
100{
101
102	hogticks = (hz / 10) * 2;	/* Default only. */
103	init_sleepqueues();
104}
105
106/*
107 * General sleep call.  Suspends the current thread until a wakeup is
108 * performed on the specified identifier.  The thread will then be made
109 * runnable with the specified priority.  Sleeps at most timo/hz seconds
110 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
111 * before and after sleeping, else signals are not checked.  Returns 0 if
112 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
113 * signal needs to be delivered, ERESTART is returned if the current system
114 * call should be restarted if possible, and EINTR is returned if the system
115 * call should be interrupted by the signal (return EINTR).
116 *
117 * The lock argument is unlocked before the caller is suspended, and
118 * re-locked before _sleep() returns.  If priority includes the PDROP
119 * flag the lock is not re-locked before returning.
120 */
121int
122_sleep(void *ident, struct lock_object *lock, int priority,
123    const char *wmesg, int timo)
124{
125	struct thread *td;
126	struct proc *p;
127	struct lock_class *class;
128	int catch, flags, lock_state, pri, rval;
129	WITNESS_SAVE_DECL(lock_witness);
130
131	td = curthread;
132	p = td->td_proc;
133#ifdef KTRACE
134	if (KTRPOINT(td, KTR_CSW))
135		ktrcsw(1, 0);
136#endif
137	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
138	    "Sleeping on \"%s\"", wmesg);
139	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
140	    ident == &lbolt, ("sleeping without a lock"));
141	KASSERT(p != NULL, ("msleep1"));
142	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
143	if (priority & PDROP)
144		KASSERT(lock != NULL && lock != &Giant.lock_object,
145		    ("PDROP requires a non-Giant lock"));
146	if (lock != NULL)
147		class = LOCK_CLASS(lock);
148	else
149		class = NULL;
150
151	if (cold) {
152		/*
153		 * During autoconfiguration, just return;
154		 * don't run any other threads or panic below,
155		 * in case this is the idle thread and already asleep.
156		 * XXX: this used to do "s = splhigh(); splx(safepri);
157		 * splx(s);" to give interrupts a chance, but there is
158		 * no way to give interrupts a chance now.
159		 */
160		if (lock != NULL && priority & PDROP)
161			class->lc_unlock(lock);
162		return (0);
163	}
164	catch = priority & PCATCH;
165	pri = priority & PRIMASK;
166	rval = 0;
167
168	/*
169	 * If we are already on a sleep queue, then remove us from that
170	 * sleep queue first.  We have to do this to handle recursive
171	 * sleeps.
172	 */
173	if (TD_ON_SLEEPQ(td))
174		sleepq_remove(td, td->td_wchan);
175
176	if (ident == &pause_wchan)
177		flags = SLEEPQ_PAUSE;
178	else
179		flags = SLEEPQ_SLEEP;
180	if (catch)
181		flags |= SLEEPQ_INTERRUPTIBLE;
182
183	sleepq_lock(ident);
184	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
185	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
186
187	DROP_GIANT();
188	if (lock != NULL && lock != &Giant.lock_object &&
189	    !(class->lc_flags & LC_SLEEPABLE)) {
190		WITNESS_SAVE(lock, lock_witness);
191		lock_state = class->lc_unlock(lock);
192	} else
193		/* GCC needs to follow the Yellow Brick Road */
194		lock_state = -1;
195
196	/*
197	 * We put ourselves on the sleep queue and start our timeout
198	 * before calling thread_suspend_check, as we could stop there,
199	 * and a wakeup or a SIGCONT (or both) could occur while we were
200	 * stopped without resuming us.  Thus, we must be ready for sleep
201	 * when cursig() is called.  If the wakeup happens while we're
202	 * stopped, then td will no longer be on a sleep queue upon
203	 * return from cursig().
204	 */
205	sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
206	if (timo)
207		sleepq_set_timeout(ident, timo);
208	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
209		sleepq_release(ident);
210		WITNESS_SAVE(lock, lock_witness);
211		lock_state = class->lc_unlock(lock);
212		sleepq_lock(ident);
213	}
214	if (timo && catch)
215		rval = sleepq_timedwait_sig(ident, pri);
216	else if (timo)
217		rval = sleepq_timedwait(ident, pri);
218	else if (catch)
219		rval = sleepq_wait_sig(ident, pri);
220	else {
221		sleepq_wait(ident, pri);
222		rval = 0;
223	}
224#ifdef KTRACE
225	if (KTRPOINT(td, KTR_CSW))
226		ktrcsw(0, 0);
227#endif
228	PICKUP_GIANT();
229	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
230		class->lc_lock(lock, lock_state);
231		WITNESS_RESTORE(lock, lock_witness);
232	}
233	return (rval);
234}
235
236int
237msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
238{
239	struct thread *td;
240	struct proc *p;
241	int rval;
242	WITNESS_SAVE_DECL(mtx);
243
244	td = curthread;
245	p = td->td_proc;
246	KASSERT(mtx != NULL, ("sleeping without a mutex"));
247	KASSERT(p != NULL, ("msleep1"));
248	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
249
250	if (cold) {
251		/*
252		 * During autoconfiguration, just return;
253		 * don't run any other threads or panic below,
254		 * in case this is the idle thread and already asleep.
255		 * XXX: this used to do "s = splhigh(); splx(safepri);
256		 * splx(s);" to give interrupts a chance, but there is
257		 * no way to give interrupts a chance now.
258		 */
259		return (0);
260	}
261
262	sleepq_lock(ident);
263	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
264	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
265
266	DROP_GIANT();
267	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
268	WITNESS_SAVE(&mtx->lock_object, mtx);
269	mtx_unlock_spin(mtx);
270
271	/*
272	 * We put ourselves on the sleep queue and start our timeout.
273	 */
274	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
275	if (timo)
276		sleepq_set_timeout(ident, timo);
277
278	/*
279	 * Can't call ktrace with any spin locks held so it can lock the
280	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
281	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
282	 * we handle those requests.  This is safe since we have placed our
283	 * thread on the sleep queue already.
284	 */
285#ifdef KTRACE
286	if (KTRPOINT(td, KTR_CSW)) {
287		sleepq_release(ident);
288		ktrcsw(1, 0);
289		sleepq_lock(ident);
290	}
291#endif
292#ifdef WITNESS
293	sleepq_release(ident);
294	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
295	    wmesg);
296	sleepq_lock(ident);
297#endif
298	if (timo)
299		rval = sleepq_timedwait(ident, 0);
300	else {
301		sleepq_wait(ident, 0);
302		rval = 0;
303	}
304#ifdef KTRACE
305	if (KTRPOINT(td, KTR_CSW))
306		ktrcsw(0, 0);
307#endif
308	PICKUP_GIANT();
309	mtx_lock_spin(mtx);
310	WITNESS_RESTORE(&mtx->lock_object, mtx);
311	return (rval);
312}
313
314/*
315 * pause() is like tsleep() except that the intention is to not be
316 * explicitly woken up by another thread.  Instead, the current thread
317 * simply wishes to sleep until the timeout expires.  It is
318 * implemented using a dummy wait channel.
319 */
320int
321pause(const char *wmesg, int timo)
322{
323
324	KASSERT(timo != 0, ("pause: timeout required"));
325	return (tsleep(&pause_wchan, 0, wmesg, timo));
326}
327
328/*
329 * Make all threads sleeping on the specified identifier runnable.
330 */
331void
332wakeup(void *ident)
333{
334	int wakeup_swapper;
335
336	sleepq_lock(ident);
337	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
338	sleepq_release(ident);
339	if (wakeup_swapper)
340		kick_proc0();
341}
342
343/*
344 * Make a thread sleeping on the specified identifier runnable.
345 * May wake more than one thread if a target thread is currently
346 * swapped out.
347 */
348void
349wakeup_one(void *ident)
350{
351	int wakeup_swapper;
352
353	sleepq_lock(ident);
354	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
355	sleepq_release(ident);
356	if (wakeup_swapper)
357		kick_proc0();
358}
359
360static void
361kdb_switch(void)
362{
363	thread_unlock(curthread);
364	kdb_backtrace();
365	kdb_reenter();
366	panic("%s: did not reenter debugger", __func__);
367}
368
369/*
370 * The machine independent parts of context switching.
371 */
372void
373mi_switch(int flags, struct thread *newtd)
374{
375	uint64_t runtime, new_switchtime;
376	struct thread *td;
377	struct proc *p;
378
379	td = curthread;			/* XXX */
380	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
381	p = td->td_proc;		/* XXX */
382	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
383#ifdef INVARIANTS
384	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
385		mtx_assert(&Giant, MA_NOTOWNED);
386#endif
387	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
388	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
389	    newtd == NULL) || panicstr,
390	    ("mi_switch: switch in a critical section"));
391	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
392	    ("mi_switch: switch must be voluntary or involuntary"));
393	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
394
395	/*
396	 * Don't perform context switches from the debugger.
397	 */
398	if (kdb_active)
399		kdb_switch();
400	if (flags & SW_VOL)
401		td->td_ru.ru_nvcsw++;
402	else
403		td->td_ru.ru_nivcsw++;
404#ifdef SCHED_STATS
405	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
406#endif
407	/*
408	 * Compute the amount of time during which the current
409	 * thread was running, and add that to its total so far.
410	 */
411	new_switchtime = cpu_ticks();
412	runtime = new_switchtime - PCPU_GET(switchtime);
413	td->td_runtime += runtime;
414	td->td_incruntime += runtime;
415	PCPU_SET(switchtime, new_switchtime);
416	td->td_generation++;	/* bump preempt-detect counter */
417	PCPU_INC(cnt.v_swtch);
418	PCPU_SET(switchticks, ticks);
419	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
420	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
421#if (KTR_COMPILE & KTR_SCHED) != 0
422	if (TD_IS_IDLETHREAD(td))
423		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
424		    td, td->td_name, td->td_priority);
425	else if (newtd != NULL)
426		CTR5(KTR_SCHED,
427		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
428		    td, td->td_name, td->td_priority, newtd,
429		    newtd->td_name);
430	else
431		CTR6(KTR_SCHED,
432		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
433		    td, td->td_name, td->td_priority,
434		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
435#endif
436	sched_switch(td, newtd, flags);
437	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
438	    td, td->td_name, td->td_priority);
439
440	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
441	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
442
443	/*
444	 * If the last thread was exiting, finish cleaning it up.
445	 */
446	if ((td = PCPU_GET(deadthread))) {
447		PCPU_SET(deadthread, NULL);
448		thread_stash(td);
449	}
450}
451
452/*
453 * Change thread state to be runnable, placing it on the run queue if
454 * it is in memory.  If it is swapped out, return true so our caller
455 * will know to awaken the swapper.
456 */
457int
458setrunnable(struct thread *td)
459{
460
461	THREAD_LOCK_ASSERT(td, MA_OWNED);
462	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
463	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
464	switch (td->td_state) {
465	case TDS_RUNNING:
466	case TDS_RUNQ:
467		return (0);
468	case TDS_INHIBITED:
469		/*
470		 * If we are only inhibited because we are swapped out
471		 * then arange to swap in this process. Otherwise just return.
472		 */
473		if (td->td_inhibitors != TDI_SWAPPED)
474			return (0);
475		/* FALLTHROUGH */
476	case TDS_CAN_RUN:
477		break;
478	default:
479		printf("state is 0x%x", td->td_state);
480		panic("setrunnable(2)");
481	}
482	if ((td->td_flags & TDF_INMEM) == 0) {
483		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
484			td->td_flags |= TDF_SWAPINREQ;
485			return (1);
486		}
487	} else
488		sched_wakeup(td);
489	return (0);
490}
491
492/*
493 * Compute a tenex style load average of a quantity on
494 * 1, 5 and 15 minute intervals.
495 */
496static void
497loadav(void *arg)
498{
499	int i, nrun;
500	struct loadavg *avg;
501
502	nrun = sched_load();
503	avg = &averunnable;
504
505	for (i = 0; i < 3; i++)
506		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
507		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
508
509	/*
510	 * Schedule the next update to occur after 5 seconds, but add a
511	 * random variation to avoid synchronisation with processes that
512	 * run at regular intervals.
513	 */
514	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
515	    loadav, NULL);
516}
517
518static void
519lboltcb(void *arg)
520{
521	wakeup(&lbolt);
522	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
523}
524
525/* ARGSUSED */
526static void
527synch_setup(void *dummy)
528{
529	callout_init(&loadav_callout, CALLOUT_MPSAFE);
530	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
531
532	/* Kick off timeout driven events by calling first time. */
533	loadav(NULL);
534	lboltcb(NULL);
535}
536
537/*
538 * General purpose yield system call.
539 */
540int
541yield(struct thread *td, struct yield_args *uap)
542{
543
544	thread_lock(td);
545	sched_prio(td, PRI_MAX_TIMESHARE);
546	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
547	thread_unlock(td);
548	td->td_retval[0] = 0;
549	return (0);
550}
551