kern_synch.c revision 181334
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 181334 2008-08-05 20:02:31Z jhb $");
39
40#include "opt_ktrace.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/signalvar.h>
55#include <sys/sleepqueue.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void synch_setup(void *dummy);
69SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70    NULL);
71
72int	hogticks;
73int	lbolt;
74static int pause_wchan;
75
76static struct callout loadav_callout;
77static struct callout lbolt_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
92static int      fscale __unused = FSCALE;
93SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
94
95static void	loadav(void *arg);
96static void	lboltcb(void *arg);
97
98void
99sleepinit(void)
100{
101
102	hogticks = (hz / 10) * 2;	/* Default only. */
103	init_sleepqueues();
104}
105
106/*
107 * General sleep call.  Suspends the current thread until a wakeup is
108 * performed on the specified identifier.  The thread will then be made
109 * runnable with the specified priority.  Sleeps at most timo/hz seconds
110 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
111 * before and after sleeping, else signals are not checked.  Returns 0 if
112 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
113 * signal needs to be delivered, ERESTART is returned if the current system
114 * call should be restarted if possible, and EINTR is returned if the system
115 * call should be interrupted by the signal (return EINTR).
116 *
117 * The lock argument is unlocked before the caller is suspended, and
118 * re-locked before _sleep() returns.  If priority includes the PDROP
119 * flag the lock is not re-locked before returning.
120 */
121int
122_sleep(void *ident, struct lock_object *lock, int priority,
123    const char *wmesg, int timo)
124{
125	struct thread *td;
126	struct proc *p;
127	struct lock_class *class;
128	int catch, flags, lock_state, pri, rval;
129	WITNESS_SAVE_DECL(lock_witness);
130
131	td = curthread;
132	p = td->td_proc;
133#ifdef KTRACE
134	if (KTRPOINT(td, KTR_CSW))
135		ktrcsw(1, 0);
136#endif
137	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
138	    "Sleeping on \"%s\"", wmesg);
139	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
140	    ident == &lbolt, ("sleeping without a lock"));
141	KASSERT(p != NULL, ("msleep1"));
142	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
143	if (lock != NULL)
144		class = LOCK_CLASS(lock);
145	else
146		class = NULL;
147
148	if (cold) {
149		/*
150		 * During autoconfiguration, just return;
151		 * don't run any other threads or panic below,
152		 * in case this is the idle thread and already asleep.
153		 * XXX: this used to do "s = splhigh(); splx(safepri);
154		 * splx(s);" to give interrupts a chance, but there is
155		 * no way to give interrupts a chance now.
156		 */
157		if (lock != NULL && priority & PDROP)
158			class->lc_unlock(lock);
159		return (0);
160	}
161	catch = priority & PCATCH;
162	pri = priority & PRIMASK;
163	rval = 0;
164
165	/*
166	 * If we are already on a sleep queue, then remove us from that
167	 * sleep queue first.  We have to do this to handle recursive
168	 * sleeps.
169	 */
170	if (TD_ON_SLEEPQ(td))
171		sleepq_remove(td, td->td_wchan);
172
173	if (ident == &pause_wchan)
174		flags = SLEEPQ_PAUSE;
175	else
176		flags = SLEEPQ_SLEEP;
177	if (catch)
178		flags |= SLEEPQ_INTERRUPTIBLE;
179
180	sleepq_lock(ident);
181	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
183
184	DROP_GIANT();
185	if (lock != NULL && !(class->lc_flags & LC_SLEEPABLE)) {
186		WITNESS_SAVE(lock, lock_witness);
187		lock_state = class->lc_unlock(lock);
188	} else
189		/* GCC needs to follow the Yellow Brick Road */
190		lock_state = -1;
191
192	/*
193	 * We put ourselves on the sleep queue and start our timeout
194	 * before calling thread_suspend_check, as we could stop there,
195	 * and a wakeup or a SIGCONT (or both) could occur while we were
196	 * stopped without resuming us.  Thus, we must be ready for sleep
197	 * when cursig() is called.  If the wakeup happens while we're
198	 * stopped, then td will no longer be on a sleep queue upon
199	 * return from cursig().
200	 */
201	sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
202	if (timo)
203		sleepq_set_timeout(ident, timo);
204	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
205		sleepq_release(ident);
206		WITNESS_SAVE(lock, lock_witness);
207		lock_state = class->lc_unlock(lock);
208		sleepq_lock(ident);
209	}
210	if (timo && catch)
211		rval = sleepq_timedwait_sig(ident, pri);
212	else if (timo)
213		rval = sleepq_timedwait(ident, pri);
214	else if (catch)
215		rval = sleepq_wait_sig(ident, pri);
216	else {
217		sleepq_wait(ident, pri);
218		rval = 0;
219	}
220#ifdef KTRACE
221	if (KTRPOINT(td, KTR_CSW))
222		ktrcsw(0, 0);
223#endif
224	PICKUP_GIANT();
225	if (lock != NULL && !(priority & PDROP)) {
226		class->lc_lock(lock, lock_state);
227		WITNESS_RESTORE(lock, lock_witness);
228	}
229	return (rval);
230}
231
232int
233msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
234{
235	struct thread *td;
236	struct proc *p;
237	int rval;
238	WITNESS_SAVE_DECL(mtx);
239
240	td = curthread;
241	p = td->td_proc;
242	KASSERT(mtx != NULL, ("sleeping without a mutex"));
243	KASSERT(p != NULL, ("msleep1"));
244	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
245
246	if (cold) {
247		/*
248		 * During autoconfiguration, just return;
249		 * don't run any other threads or panic below,
250		 * in case this is the idle thread and already asleep.
251		 * XXX: this used to do "s = splhigh(); splx(safepri);
252		 * splx(s);" to give interrupts a chance, but there is
253		 * no way to give interrupts a chance now.
254		 */
255		return (0);
256	}
257
258	sleepq_lock(ident);
259	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
260	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
261
262	DROP_GIANT();
263	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
264	WITNESS_SAVE(&mtx->lock_object, mtx);
265	mtx_unlock_spin(mtx);
266
267	/*
268	 * We put ourselves on the sleep queue and start our timeout.
269	 */
270	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
271	if (timo)
272		sleepq_set_timeout(ident, timo);
273
274	/*
275	 * Can't call ktrace with any spin locks held so it can lock the
276	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
277	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
278	 * we handle those requests.  This is safe since we have placed our
279	 * thread on the sleep queue already.
280	 */
281#ifdef KTRACE
282	if (KTRPOINT(td, KTR_CSW)) {
283		sleepq_release(ident);
284		ktrcsw(1, 0);
285		sleepq_lock(ident);
286	}
287#endif
288#ifdef WITNESS
289	sleepq_release(ident);
290	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
291	    wmesg);
292	sleepq_lock(ident);
293#endif
294	if (timo)
295		rval = sleepq_timedwait(ident, 0);
296	else {
297		sleepq_wait(ident, 0);
298		rval = 0;
299	}
300#ifdef KTRACE
301	if (KTRPOINT(td, KTR_CSW))
302		ktrcsw(0, 0);
303#endif
304	PICKUP_GIANT();
305	mtx_lock_spin(mtx);
306	WITNESS_RESTORE(&mtx->lock_object, mtx);
307	return (rval);
308}
309
310/*
311 * pause() is like tsleep() except that the intention is to not be
312 * explicitly woken up by another thread.  Instead, the current thread
313 * simply wishes to sleep until the timeout expires.  It is
314 * implemented using a dummy wait channel.
315 */
316int
317pause(const char *wmesg, int timo)
318{
319
320	KASSERT(timo != 0, ("pause: timeout required"));
321	return (tsleep(&pause_wchan, 0, wmesg, timo));
322}
323
324/*
325 * Make all threads sleeping on the specified identifier runnable.
326 */
327void
328wakeup(void *ident)
329{
330	int wakeup_swapper;
331
332	sleepq_lock(ident);
333	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
334	sleepq_release(ident);
335	if (wakeup_swapper)
336		kick_proc0();
337}
338
339/*
340 * Make a thread sleeping on the specified identifier runnable.
341 * May wake more than one thread if a target thread is currently
342 * swapped out.
343 */
344void
345wakeup_one(void *ident)
346{
347	int wakeup_swapper;
348
349	sleepq_lock(ident);
350	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
351	sleepq_release(ident);
352	if (wakeup_swapper)
353		kick_proc0();
354}
355
356static void
357kdb_switch(void)
358{
359	thread_unlock(curthread);
360	kdb_backtrace();
361	kdb_reenter();
362	panic("%s: did not reenter debugger", __func__);
363}
364
365/*
366 * The machine independent parts of context switching.
367 */
368void
369mi_switch(int flags, struct thread *newtd)
370{
371	uint64_t runtime, new_switchtime;
372	struct thread *td;
373	struct proc *p;
374
375	td = curthread;			/* XXX */
376	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
377	p = td->td_proc;		/* XXX */
378	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
379#ifdef INVARIANTS
380	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
381		mtx_assert(&Giant, MA_NOTOWNED);
382#endif
383	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
384	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
385	    newtd == NULL) || panicstr,
386	    ("mi_switch: switch in a critical section"));
387	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
388	    ("mi_switch: switch must be voluntary or involuntary"));
389	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
390
391	/*
392	 * Don't perform context switches from the debugger.
393	 */
394	if (kdb_active)
395		kdb_switch();
396	if (flags & SW_VOL)
397		td->td_ru.ru_nvcsw++;
398	else
399		td->td_ru.ru_nivcsw++;
400#ifdef SCHED_STATS
401	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
402#endif
403	/*
404	 * Compute the amount of time during which the current
405	 * thread was running, and add that to its total so far.
406	 */
407	new_switchtime = cpu_ticks();
408	runtime = new_switchtime - PCPU_GET(switchtime);
409	td->td_runtime += runtime;
410	td->td_incruntime += runtime;
411	PCPU_SET(switchtime, new_switchtime);
412	td->td_generation++;	/* bump preempt-detect counter */
413	PCPU_INC(cnt.v_swtch);
414	PCPU_SET(switchticks, ticks);
415	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
416	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
417#if (KTR_COMPILE & KTR_SCHED) != 0
418	if (TD_IS_IDLETHREAD(td))
419		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
420		    td, td->td_name, td->td_priority);
421	else if (newtd != NULL)
422		CTR5(KTR_SCHED,
423		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
424		    td, td->td_name, td->td_priority, newtd,
425		    newtd->td_name);
426	else
427		CTR6(KTR_SCHED,
428		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
429		    td, td->td_name, td->td_priority,
430		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
431#endif
432	sched_switch(td, newtd, flags);
433	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
434	    td, td->td_name, td->td_priority);
435
436	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
437	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
438
439	/*
440	 * If the last thread was exiting, finish cleaning it up.
441	 */
442	if ((td = PCPU_GET(deadthread))) {
443		PCPU_SET(deadthread, NULL);
444		thread_stash(td);
445	}
446}
447
448/*
449 * Change thread state to be runnable, placing it on the run queue if
450 * it is in memory.  If it is swapped out, return true so our caller
451 * will know to awaken the swapper.
452 */
453int
454setrunnable(struct thread *td)
455{
456
457	THREAD_LOCK_ASSERT(td, MA_OWNED);
458	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
459	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
460	switch (td->td_state) {
461	case TDS_RUNNING:
462	case TDS_RUNQ:
463		return (0);
464	case TDS_INHIBITED:
465		/*
466		 * If we are only inhibited because we are swapped out
467		 * then arange to swap in this process. Otherwise just return.
468		 */
469		if (td->td_inhibitors != TDI_SWAPPED)
470			return (0);
471		/* FALLTHROUGH */
472	case TDS_CAN_RUN:
473		break;
474	default:
475		printf("state is 0x%x", td->td_state);
476		panic("setrunnable(2)");
477	}
478	if ((td->td_flags & TDF_INMEM) == 0) {
479		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
480			td->td_flags |= TDF_SWAPINREQ;
481			return (1);
482		}
483	} else
484		sched_wakeup(td);
485	return (0);
486}
487
488/*
489 * Compute a tenex style load average of a quantity on
490 * 1, 5 and 15 minute intervals.
491 */
492static void
493loadav(void *arg)
494{
495	int i, nrun;
496	struct loadavg *avg;
497
498	nrun = sched_load();
499	avg = &averunnable;
500
501	for (i = 0; i < 3; i++)
502		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
503		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
504
505	/*
506	 * Schedule the next update to occur after 5 seconds, but add a
507	 * random variation to avoid synchronisation with processes that
508	 * run at regular intervals.
509	 */
510	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
511	    loadav, NULL);
512}
513
514static void
515lboltcb(void *arg)
516{
517	wakeup(&lbolt);
518	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
519}
520
521/* ARGSUSED */
522static void
523synch_setup(void *dummy)
524{
525	callout_init(&loadav_callout, CALLOUT_MPSAFE);
526	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
527
528	/* Kick off timeout driven events by calling first time. */
529	loadav(NULL);
530	lboltcb(NULL);
531}
532
533/*
534 * General purpose yield system call.
535 */
536int
537yield(struct thread *td, struct yield_args *uap)
538{
539
540	thread_lock(td);
541	sched_prio(td, PRI_MAX_TIMESHARE);
542	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
543	thread_unlock(td);
544	td->td_retval[0] = 0;
545	return (0);
546}
547