kern_synch.c revision 177253
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 177253 2008-03-16 10:58:09Z rwatson $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
69    NULL);
70
71int	hogticks;
72int	lbolt;
73static int pause_wchan;
74
75static struct callout loadav_callout;
76static struct callout lbolt_callout;
77
78struct loadavg averunnable =
79	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
80/*
81 * Constants for averages over 1, 5, and 15 minutes
82 * when sampling at 5 second intervals.
83 */
84static fixpt_t cexp[3] = {
85	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
86	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
87	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
88};
89
90/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
91static int      fscale __unused = FSCALE;
92SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
93
94static void	loadav(void *arg);
95static void	lboltcb(void *arg);
96
97void
98sleepinit(void)
99{
100
101	hogticks = (hz / 10) * 2;	/* Default only. */
102	init_sleepqueues();
103}
104
105/*
106 * General sleep call.  Suspends the current thread until a wakeup is
107 * performed on the specified identifier.  The thread will then be made
108 * runnable with the specified priority.  Sleeps at most timo/hz seconds
109 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
110 * before and after sleeping, else signals are not checked.  Returns 0 if
111 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
112 * signal needs to be delivered, ERESTART is returned if the current system
113 * call should be restarted if possible, and EINTR is returned if the system
114 * call should be interrupted by the signal (return EINTR).
115 *
116 * The lock argument is unlocked before the caller is suspended, and
117 * re-locked before _sleep() returns.  If priority includes the PDROP
118 * flag the lock is not re-locked before returning.
119 */
120int
121_sleep(ident, lock, priority, wmesg, timo)
122	void *ident;
123	struct lock_object *lock;
124	int priority, timo;
125	const char *wmesg;
126{
127	struct thread *td;
128	struct proc *p;
129	struct lock_class *class;
130	int catch, flags, lock_state, pri, rval;
131	WITNESS_SAVE_DECL(lock_witness);
132
133	td = curthread;
134	p = td->td_proc;
135#ifdef KTRACE
136	if (KTRPOINT(td, KTR_CSW))
137		ktrcsw(1, 0);
138#endif
139	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
140	    "Sleeping on \"%s\"", wmesg);
141	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
142	    ident == &lbolt, ("sleeping without a lock"));
143	KASSERT(p != NULL, ("msleep1"));
144	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
145	if (lock != NULL)
146		class = LOCK_CLASS(lock);
147	else
148		class = NULL;
149
150	if (cold) {
151		/*
152		 * During autoconfiguration, just return;
153		 * don't run any other threads or panic below,
154		 * in case this is the idle thread and already asleep.
155		 * XXX: this used to do "s = splhigh(); splx(safepri);
156		 * splx(s);" to give interrupts a chance, but there is
157		 * no way to give interrupts a chance now.
158		 */
159		if (lock != NULL && priority & PDROP)
160			class->lc_unlock(lock);
161		return (0);
162	}
163	catch = priority & PCATCH;
164	pri = priority & PRIMASK;
165	rval = 0;
166
167	/*
168	 * If we are already on a sleep queue, then remove us from that
169	 * sleep queue first.  We have to do this to handle recursive
170	 * sleeps.
171	 */
172	if (TD_ON_SLEEPQ(td))
173		sleepq_remove(td, td->td_wchan);
174
175	if (ident == &pause_wchan)
176		flags = SLEEPQ_PAUSE;
177	else
178		flags = SLEEPQ_SLEEP;
179	if (catch)
180		flags |= SLEEPQ_INTERRUPTIBLE;
181
182	sleepq_lock(ident);
183	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
184	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
185
186	DROP_GIANT();
187	if (lock != NULL && !(class->lc_flags & LC_SLEEPABLE)) {
188		WITNESS_SAVE(lock, lock_witness);
189		lock_state = class->lc_unlock(lock);
190	} else
191		/* GCC needs to follow the Yellow Brick Road */
192		lock_state = -1;
193
194	/*
195	 * We put ourselves on the sleep queue and start our timeout
196	 * before calling thread_suspend_check, as we could stop there,
197	 * and a wakeup or a SIGCONT (or both) could occur while we were
198	 * stopped without resuming us.  Thus, we must be ready for sleep
199	 * when cursig() is called.  If the wakeup happens while we're
200	 * stopped, then td will no longer be on a sleep queue upon
201	 * return from cursig().
202	 */
203	sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
204	if (timo)
205		sleepq_set_timeout(ident, timo);
206	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
207		sleepq_release(ident);
208		WITNESS_SAVE(lock, lock_witness);
209		lock_state = class->lc_unlock(lock);
210		sleepq_lock(ident);
211	}
212	if (timo && catch)
213		rval = sleepq_timedwait_sig(ident, pri);
214	else if (timo)
215		rval = sleepq_timedwait(ident, pri);
216	else if (catch)
217		rval = sleepq_wait_sig(ident, pri);
218	else {
219		sleepq_wait(ident, pri);
220		rval = 0;
221	}
222#ifdef KTRACE
223	if (KTRPOINT(td, KTR_CSW))
224		ktrcsw(0, 0);
225#endif
226	PICKUP_GIANT();
227	if (lock != NULL && !(priority & PDROP)) {
228		class->lc_lock(lock, lock_state);
229		WITNESS_RESTORE(lock, lock_witness);
230	}
231	return (rval);
232}
233
234int
235msleep_spin(ident, mtx, wmesg, timo)
236	void *ident;
237	struct mtx *mtx;
238	const char *wmesg;
239	int timo;
240{
241	struct thread *td;
242	struct proc *p;
243	int rval;
244	WITNESS_SAVE_DECL(mtx);
245
246	td = curthread;
247	p = td->td_proc;
248	KASSERT(mtx != NULL, ("sleeping without a mutex"));
249	KASSERT(p != NULL, ("msleep1"));
250	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
251
252	if (cold) {
253		/*
254		 * During autoconfiguration, just return;
255		 * don't run any other threads or panic below,
256		 * in case this is the idle thread and already asleep.
257		 * XXX: this used to do "s = splhigh(); splx(safepri);
258		 * splx(s);" to give interrupts a chance, but there is
259		 * no way to give interrupts a chance now.
260		 */
261		return (0);
262	}
263
264	sleepq_lock(ident);
265	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
266	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
267
268	DROP_GIANT();
269	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
270	WITNESS_SAVE(&mtx->lock_object, mtx);
271	mtx_unlock_spin(mtx);
272
273	/*
274	 * We put ourselves on the sleep queue and start our timeout.
275	 */
276	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
277	if (timo)
278		sleepq_set_timeout(ident, timo);
279
280	/*
281	 * Can't call ktrace with any spin locks held so it can lock the
282	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
283	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
284	 * we handle those requests.  This is safe since we have placed our
285	 * thread on the sleep queue already.
286	 */
287#ifdef KTRACE
288	if (KTRPOINT(td, KTR_CSW)) {
289		sleepq_release(ident);
290		ktrcsw(1, 0);
291		sleepq_lock(ident);
292	}
293#endif
294#ifdef WITNESS
295	sleepq_release(ident);
296	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
297	    wmesg);
298	sleepq_lock(ident);
299#endif
300	if (timo)
301		rval = sleepq_timedwait(ident, 0);
302	else {
303		sleepq_wait(ident, 0);
304		rval = 0;
305	}
306#ifdef KTRACE
307	if (KTRPOINT(td, KTR_CSW))
308		ktrcsw(0, 0);
309#endif
310	PICKUP_GIANT();
311	mtx_lock_spin(mtx);
312	WITNESS_RESTORE(&mtx->lock_object, mtx);
313	return (rval);
314}
315
316/*
317 * pause() is like tsleep() except that the intention is to not be
318 * explicitly woken up by another thread.  Instead, the current thread
319 * simply wishes to sleep until the timeout expires.  It is
320 * implemented using a dummy wait channel.
321 */
322int
323pause(wmesg, timo)
324	const char *wmesg;
325	int timo;
326{
327
328	KASSERT(timo != 0, ("pause: timeout required"));
329	return (tsleep(&pause_wchan, 0, wmesg, timo));
330}
331
332/*
333 * Make all threads sleeping on the specified identifier runnable.
334 */
335void
336wakeup(ident)
337	register void *ident;
338{
339
340	sleepq_lock(ident);
341	sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
342	sleepq_release(ident);
343}
344
345/*
346 * Make a thread sleeping on the specified identifier runnable.
347 * May wake more than one thread if a target thread is currently
348 * swapped out.
349 */
350void
351wakeup_one(ident)
352	register void *ident;
353{
354
355	sleepq_lock(ident);
356	sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
357	sleepq_release(ident);
358}
359
360static void
361kdb_switch(void)
362{
363	thread_unlock(curthread);
364	kdb_backtrace();
365	kdb_reenter();
366	panic("%s: did not reenter debugger", __func__);
367}
368
369/*
370 * The machine independent parts of context switching.
371 */
372void
373mi_switch(int flags, struct thread *newtd)
374{
375	uint64_t runtime, new_switchtime;
376	struct thread *td;
377	struct proc *p;
378
379	td = curthread;			/* XXX */
380	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
381	p = td->td_proc;		/* XXX */
382	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
383#ifdef INVARIANTS
384	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
385		mtx_assert(&Giant, MA_NOTOWNED);
386#endif
387	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
388	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
389	    newtd == NULL) || panicstr,
390	    ("mi_switch: switch in a critical section"));
391	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
392	    ("mi_switch: switch must be voluntary or involuntary"));
393	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
394
395	/*
396	 * Don't perform context switches from the debugger.
397	 */
398	if (kdb_active)
399		kdb_switch();
400	if (flags & SW_VOL)
401		td->td_ru.ru_nvcsw++;
402	else
403		td->td_ru.ru_nivcsw++;
404	/*
405	 * Compute the amount of time during which the current
406	 * thread was running, and add that to its total so far.
407	 */
408	new_switchtime = cpu_ticks();
409	runtime = new_switchtime - PCPU_GET(switchtime);
410	td->td_runtime += runtime;
411	td->td_incruntime += runtime;
412	PCPU_SET(switchtime, new_switchtime);
413	td->td_generation++;	/* bump preempt-detect counter */
414	PCPU_INC(cnt.v_swtch);
415	PCPU_SET(switchticks, ticks);
416	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
417	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
418#if (KTR_COMPILE & KTR_SCHED) != 0
419	if (TD_IS_IDLETHREAD(td))
420		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
421		    td, td->td_name, td->td_priority);
422	else if (newtd != NULL)
423		CTR5(KTR_SCHED,
424		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
425		    td, td->td_name, td->td_priority, newtd,
426		    newtd->td_name);
427	else
428		CTR6(KTR_SCHED,
429		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
430		    td, td->td_name, td->td_priority,
431		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
432#endif
433	sched_switch(td, newtd, flags);
434	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
435	    td, td->td_name, td->td_priority);
436
437	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
438	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
439
440	/*
441	 * If the last thread was exiting, finish cleaning it up.
442	 */
443	if ((td = PCPU_GET(deadthread))) {
444		PCPU_SET(deadthread, NULL);
445		thread_stash(td);
446	}
447}
448
449/*
450 * Change process state to be runnable,
451 * placing it on the run queue if it is in memory,
452 * and awakening the swapper if it isn't in memory.
453 */
454void
455setrunnable(struct thread *td)
456{
457
458	THREAD_LOCK_ASSERT(td, MA_OWNED);
459	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
460	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
461	switch (td->td_state) {
462	case TDS_RUNNING:
463	case TDS_RUNQ:
464		return;
465	case TDS_INHIBITED:
466		/*
467		 * If we are only inhibited because we are swapped out
468		 * then arange to swap in this process. Otherwise just return.
469		 */
470		if (td->td_inhibitors != TDI_SWAPPED)
471			return;
472		/* XXX: intentional fall-through ? */
473	case TDS_CAN_RUN:
474		break;
475	default:
476		printf("state is 0x%x", td->td_state);
477		panic("setrunnable(2)");
478	}
479	if ((td->td_flags & TDF_INMEM) == 0) {
480		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
481			td->td_flags |= TDF_SWAPINREQ;
482			/*
483			 * due to a LOR between the thread lock and
484			 * the sleepqueue chain locks, use
485			 * lower level scheduling functions.
486			 */
487			kick_proc0();
488		}
489	} else
490		sched_wakeup(td);
491}
492
493/*
494 * Compute a tenex style load average of a quantity on
495 * 1, 5 and 15 minute intervals.
496 */
497static void
498loadav(void *arg)
499{
500	int i, nrun;
501	struct loadavg *avg;
502
503	nrun = sched_load();
504	avg = &averunnable;
505
506	for (i = 0; i < 3; i++)
507		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
508		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
509
510	/*
511	 * Schedule the next update to occur after 5 seconds, but add a
512	 * random variation to avoid synchronisation with processes that
513	 * run at regular intervals.
514	 */
515	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
516	    loadav, NULL);
517}
518
519static void
520lboltcb(void *arg)
521{
522	wakeup(&lbolt);
523	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
524}
525
526/* ARGSUSED */
527static void
528synch_setup(dummy)
529	void *dummy;
530{
531	callout_init(&loadav_callout, CALLOUT_MPSAFE);
532	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
533
534	/* Kick off timeout driven events by calling first time. */
535	loadav(NULL);
536	lboltcb(NULL);
537}
538
539/*
540 * General purpose yield system call.
541 */
542int
543yield(struct thread *td, struct yield_args *uap)
544{
545
546	thread_lock(td);
547	sched_prio(td, PRI_MAX_TIMESHARE);
548	mi_switch(SW_VOL, NULL);
549	thread_unlock(td);
550	td->td_retval[0] = 0;
551	return (0);
552}
553