kern_synch.c revision 177091
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 177091 2008-03-12 10:12:01Z jeff $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72static int pause_wchan;
73
74static struct callout loadav_callout;
75static struct callout lbolt_callout;
76
77struct loadavg averunnable =
78	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79/*
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
82 */
83static fixpt_t cexp[3] = {
84	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87};
88
89/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90static int      fscale __unused = FSCALE;
91SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92
93static void	loadav(void *arg);
94static void	lboltcb(void *arg);
95
96void
97sleepinit(void)
98{
99
100	hogticks = (hz / 10) * 2;	/* Default only. */
101	init_sleepqueues();
102}
103
104/*
105 * General sleep call.  Suspends the current thread until a wakeup is
106 * performed on the specified identifier.  The thread will then be made
107 * runnable with the specified priority.  Sleeps at most timo/hz seconds
108 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked.  Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 *
115 * The lock argument is unlocked before the caller is suspended, and
116 * re-locked before _sleep() returns.  If priority includes the PDROP
117 * flag the lock is not re-locked before returning.
118 */
119int
120_sleep(ident, lock, priority, wmesg, timo)
121	void *ident;
122	struct lock_object *lock;
123	int priority, timo;
124	const char *wmesg;
125{
126	struct thread *td;
127	struct proc *p;
128	struct lock_class *class;
129	int catch, flags, lock_state, pri, rval;
130	WITNESS_SAVE_DECL(lock_witness);
131
132	td = curthread;
133	p = td->td_proc;
134#ifdef KTRACE
135	if (KTRPOINT(td, KTR_CSW))
136		ktrcsw(1, 0);
137#endif
138	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
139	    "Sleeping on \"%s\"", wmesg);
140	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
141	    ident == &lbolt, ("sleeping without a lock"));
142	KASSERT(p != NULL, ("msleep1"));
143	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
144	if (lock != NULL)
145		class = LOCK_CLASS(lock);
146	else
147		class = NULL;
148
149	if (cold) {
150		/*
151		 * During autoconfiguration, just return;
152		 * don't run any other threads or panic below,
153		 * in case this is the idle thread and already asleep.
154		 * XXX: this used to do "s = splhigh(); splx(safepri);
155		 * splx(s);" to give interrupts a chance, but there is
156		 * no way to give interrupts a chance now.
157		 */
158		if (lock != NULL && priority & PDROP)
159			class->lc_unlock(lock);
160		return (0);
161	}
162	catch = priority & PCATCH;
163	pri = priority & PRIMASK;
164	rval = 0;
165
166	/*
167	 * If we are already on a sleep queue, then remove us from that
168	 * sleep queue first.  We have to do this to handle recursive
169	 * sleeps.
170	 */
171	if (TD_ON_SLEEPQ(td))
172		sleepq_remove(td, td->td_wchan);
173
174	if (ident == &pause_wchan)
175		flags = SLEEPQ_PAUSE;
176	else
177		flags = SLEEPQ_SLEEP;
178	if (catch)
179		flags |= SLEEPQ_INTERRUPTIBLE;
180
181	sleepq_lock(ident);
182	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
183	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
184
185	DROP_GIANT();
186	if (lock != NULL && !(class->lc_flags & LC_SLEEPABLE)) {
187		WITNESS_SAVE(lock, lock_witness);
188		lock_state = class->lc_unlock(lock);
189	} else
190		/* GCC needs to follow the Yellow Brick Road */
191		lock_state = -1;
192
193	/*
194	 * We put ourselves on the sleep queue and start our timeout
195	 * before calling thread_suspend_check, as we could stop there,
196	 * and a wakeup or a SIGCONT (or both) could occur while we were
197	 * stopped without resuming us.  Thus, we must be ready for sleep
198	 * when cursig() is called.  If the wakeup happens while we're
199	 * stopped, then td will no longer be on a sleep queue upon
200	 * return from cursig().
201	 */
202	sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
203	if (timo)
204		sleepq_set_timeout(ident, timo);
205	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
206		sleepq_release(ident);
207		WITNESS_SAVE(lock, lock_witness);
208		lock_state = class->lc_unlock(lock);
209		sleepq_lock(ident);
210	}
211	if (timo && catch)
212		rval = sleepq_timedwait_sig(ident, pri);
213	else if (timo)
214		rval = sleepq_timedwait(ident, pri);
215	else if (catch)
216		rval = sleepq_wait_sig(ident, pri);
217	else {
218		sleepq_wait(ident, pri);
219		rval = 0;
220	}
221#ifdef KTRACE
222	if (KTRPOINT(td, KTR_CSW))
223		ktrcsw(0, 0);
224#endif
225	PICKUP_GIANT();
226	if (lock != NULL && !(priority & PDROP)) {
227		class->lc_lock(lock, lock_state);
228		WITNESS_RESTORE(lock, lock_witness);
229	}
230	return (rval);
231}
232
233int
234msleep_spin(ident, mtx, wmesg, timo)
235	void *ident;
236	struct mtx *mtx;
237	const char *wmesg;
238	int timo;
239{
240	struct thread *td;
241	struct proc *p;
242	int rval;
243	WITNESS_SAVE_DECL(mtx);
244
245	td = curthread;
246	p = td->td_proc;
247	KASSERT(mtx != NULL, ("sleeping without a mutex"));
248	KASSERT(p != NULL, ("msleep1"));
249	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
250
251	if (cold) {
252		/*
253		 * During autoconfiguration, just return;
254		 * don't run any other threads or panic below,
255		 * in case this is the idle thread and already asleep.
256		 * XXX: this used to do "s = splhigh(); splx(safepri);
257		 * splx(s);" to give interrupts a chance, but there is
258		 * no way to give interrupts a chance now.
259		 */
260		return (0);
261	}
262
263	sleepq_lock(ident);
264	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
265	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
266
267	DROP_GIANT();
268	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
269	WITNESS_SAVE(&mtx->lock_object, mtx);
270	mtx_unlock_spin(mtx);
271
272	/*
273	 * We put ourselves on the sleep queue and start our timeout.
274	 */
275	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
276	if (timo)
277		sleepq_set_timeout(ident, timo);
278
279	/*
280	 * Can't call ktrace with any spin locks held so it can lock the
281	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
282	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
283	 * we handle those requests.  This is safe since we have placed our
284	 * thread on the sleep queue already.
285	 */
286#ifdef KTRACE
287	if (KTRPOINT(td, KTR_CSW)) {
288		sleepq_release(ident);
289		ktrcsw(1, 0);
290		sleepq_lock(ident);
291	}
292#endif
293#ifdef WITNESS
294	sleepq_release(ident);
295	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
296	    wmesg);
297	sleepq_lock(ident);
298#endif
299	if (timo)
300		rval = sleepq_timedwait(ident, 0);
301	else {
302		sleepq_wait(ident, 0);
303		rval = 0;
304	}
305#ifdef KTRACE
306	if (KTRPOINT(td, KTR_CSW))
307		ktrcsw(0, 0);
308#endif
309	PICKUP_GIANT();
310	mtx_lock_spin(mtx);
311	WITNESS_RESTORE(&mtx->lock_object, mtx);
312	return (rval);
313}
314
315/*
316 * pause() is like tsleep() except that the intention is to not be
317 * explicitly woken up by another thread.  Instead, the current thread
318 * simply wishes to sleep until the timeout expires.  It is
319 * implemented using a dummy wait channel.
320 */
321int
322pause(wmesg, timo)
323	const char *wmesg;
324	int timo;
325{
326
327	KASSERT(timo != 0, ("pause: timeout required"));
328	return (tsleep(&pause_wchan, 0, wmesg, timo));
329}
330
331/*
332 * Make all threads sleeping on the specified identifier runnable.
333 */
334void
335wakeup(ident)
336	register void *ident;
337{
338
339	sleepq_lock(ident);
340	sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
341	sleepq_release(ident);
342}
343
344/*
345 * Make a thread sleeping on the specified identifier runnable.
346 * May wake more than one thread if a target thread is currently
347 * swapped out.
348 */
349void
350wakeup_one(ident)
351	register void *ident;
352{
353
354	sleepq_lock(ident);
355	sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
356	sleepq_release(ident);
357}
358
359static void
360kdb_switch(void)
361{
362	thread_unlock(curthread);
363	kdb_backtrace();
364	kdb_reenter();
365	panic("%s: did not reenter debugger", __func__);
366}
367
368/*
369 * The machine independent parts of context switching.
370 */
371void
372mi_switch(int flags, struct thread *newtd)
373{
374	uint64_t runtime, new_switchtime;
375	struct thread *td;
376	struct proc *p;
377
378	td = curthread;			/* XXX */
379	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
380	p = td->td_proc;		/* XXX */
381	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
382#ifdef INVARIANTS
383	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
384		mtx_assert(&Giant, MA_NOTOWNED);
385#endif
386	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
387	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
388	    newtd == NULL) || panicstr,
389	    ("mi_switch: switch in a critical section"));
390	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
391	    ("mi_switch: switch must be voluntary or involuntary"));
392	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
393
394	/*
395	 * Don't perform context switches from the debugger.
396	 */
397	if (kdb_active)
398		kdb_switch();
399	if (flags & SW_VOL)
400		td->td_ru.ru_nvcsw++;
401	else
402		td->td_ru.ru_nivcsw++;
403	/*
404	 * Compute the amount of time during which the current
405	 * thread was running, and add that to its total so far.
406	 */
407	new_switchtime = cpu_ticks();
408	runtime = new_switchtime - PCPU_GET(switchtime);
409	td->td_runtime += runtime;
410	td->td_incruntime += runtime;
411	PCPU_SET(switchtime, new_switchtime);
412	td->td_generation++;	/* bump preempt-detect counter */
413	PCPU_INC(cnt.v_swtch);
414	PCPU_SET(switchticks, ticks);
415	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
416	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
417#if (KTR_COMPILE & KTR_SCHED) != 0
418	if (TD_IS_IDLETHREAD(td))
419		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
420		    td, td->td_name, td->td_priority);
421	else if (newtd != NULL)
422		CTR5(KTR_SCHED,
423		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
424		    td, td->td_name, td->td_priority, newtd,
425		    newtd->td_name);
426	else
427		CTR6(KTR_SCHED,
428		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
429		    td, td->td_name, td->td_priority,
430		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
431#endif
432	sched_switch(td, newtd, flags);
433	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
434	    td, td->td_name, td->td_priority);
435
436	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
437	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
438
439	/*
440	 * If the last thread was exiting, finish cleaning it up.
441	 */
442	if ((td = PCPU_GET(deadthread))) {
443		PCPU_SET(deadthread, NULL);
444		thread_stash(td);
445	}
446}
447
448/*
449 * Change process state to be runnable,
450 * placing it on the run queue if it is in memory,
451 * and awakening the swapper if it isn't in memory.
452 */
453void
454setrunnable(struct thread *td)
455{
456
457	THREAD_LOCK_ASSERT(td, MA_OWNED);
458	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
459	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
460	switch (td->td_state) {
461	case TDS_RUNNING:
462	case TDS_RUNQ:
463		return;
464	case TDS_INHIBITED:
465		/*
466		 * If we are only inhibited because we are swapped out
467		 * then arange to swap in this process. Otherwise just return.
468		 */
469		if (td->td_inhibitors != TDI_SWAPPED)
470			return;
471		/* XXX: intentional fall-through ? */
472	case TDS_CAN_RUN:
473		break;
474	default:
475		printf("state is 0x%x", td->td_state);
476		panic("setrunnable(2)");
477	}
478	if ((td->td_flags & TDF_INMEM) == 0) {
479		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
480			td->td_flags |= TDF_SWAPINREQ;
481			/*
482			 * due to a LOR between the thread lock and
483			 * the sleepqueue chain locks, use
484			 * lower level scheduling functions.
485			 */
486			kick_proc0();
487		}
488	} else
489		sched_wakeup(td);
490}
491
492/*
493 * Compute a tenex style load average of a quantity on
494 * 1, 5 and 15 minute intervals.
495 */
496static void
497loadav(void *arg)
498{
499	int i, nrun;
500	struct loadavg *avg;
501
502	nrun = sched_load();
503	avg = &averunnable;
504
505	for (i = 0; i < 3; i++)
506		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
507		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
508
509	/*
510	 * Schedule the next update to occur after 5 seconds, but add a
511	 * random variation to avoid synchronisation with processes that
512	 * run at regular intervals.
513	 */
514	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
515	    loadav, NULL);
516}
517
518static void
519lboltcb(void *arg)
520{
521	wakeup(&lbolt);
522	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
523}
524
525/* ARGSUSED */
526static void
527synch_setup(dummy)
528	void *dummy;
529{
530	callout_init(&loadav_callout, CALLOUT_MPSAFE);
531	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
532
533	/* Kick off timeout driven events by calling first time. */
534	loadav(NULL);
535	lboltcb(NULL);
536}
537
538/*
539 * General purpose yield system call.
540 */
541int
542yield(struct thread *td, struct yield_args *uap)
543{
544
545	thread_lock(td);
546	sched_prio(td, PRI_MAX_TIMESHARE);
547	mi_switch(SW_VOL, NULL);
548	thread_unlock(td);
549	td->td_retval[0] = 0;
550	return (0);
551}
552