kern_synch.c revision 170174
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 170174 2007-06-01 01:12:45Z jeff $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72static int pause_wchan;
73
74static struct callout loadav_callout;
75static struct callout lbolt_callout;
76
77struct loadavg averunnable =
78	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79/*
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
82 */
83static fixpt_t cexp[3] = {
84	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87};
88
89/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90static int      fscale __unused = FSCALE;
91SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92
93static void	loadav(void *arg);
94static void	lboltcb(void *arg);
95
96void
97sleepinit(void)
98{
99
100	hogticks = (hz / 10) * 2;	/* Default only. */
101	init_sleepqueues();
102}
103
104/*
105 * General sleep call.  Suspends the current thread until a wakeup is
106 * performed on the specified identifier.  The thread will then be made
107 * runnable with the specified priority.  Sleeps at most timo/hz seconds
108 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked.  Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 *
115 * The lock argument is unlocked before the caller is suspended, and
116 * re-locked before _sleep() returns.  If priority includes the PDROP
117 * flag the lock is not re-locked before returning.
118 */
119int
120_sleep(ident, lock, priority, wmesg, timo)
121	void *ident;
122	struct lock_object *lock;
123	int priority, timo;
124	const char *wmesg;
125{
126	struct thread *td;
127	struct proc *p;
128	struct lock_class *class;
129	int catch, flags, lock_state, pri, rval;
130	WITNESS_SAVE_DECL(lock_witness);
131
132	td = curthread;
133	p = td->td_proc;
134#ifdef KTRACE
135	if (KTRPOINT(td, KTR_CSW))
136		ktrcsw(1, 0);
137#endif
138	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
139	    "Sleeping on \"%s\"", wmesg);
140	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
141	    ident == &lbolt, ("sleeping without a lock"));
142	KASSERT(p != NULL, ("msleep1"));
143	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
144	if (lock != NULL)
145		class = LOCK_CLASS(lock);
146	else
147		class = NULL;
148
149	if (cold) {
150		/*
151		 * During autoconfiguration, just return;
152		 * don't run any other threads or panic below,
153		 * in case this is the idle thread and already asleep.
154		 * XXX: this used to do "s = splhigh(); splx(safepri);
155		 * splx(s);" to give interrupts a chance, but there is
156		 * no way to give interrupts a chance now.
157		 */
158		if (lock != NULL && priority & PDROP)
159			class->lc_unlock(lock);
160		return (0);
161	}
162	catch = priority & PCATCH;
163	rval = 0;
164
165	/*
166	 * If we are already on a sleep queue, then remove us from that
167	 * sleep queue first.  We have to do this to handle recursive
168	 * sleeps.
169	 */
170	if (TD_ON_SLEEPQ(td))
171		sleepq_remove(td, td->td_wchan);
172
173	if (ident == &pause_wchan)
174		flags = SLEEPQ_PAUSE;
175	else
176		flags = SLEEPQ_SLEEP;
177	if (catch)
178		flags |= SLEEPQ_INTERRUPTIBLE;
179
180	sleepq_lock(ident);
181	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182	    td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
183
184	DROP_GIANT();
185	if (lock != NULL && !(class->lc_flags & LC_SLEEPABLE)) {
186		WITNESS_SAVE(lock, lock_witness);
187		lock_state = class->lc_unlock(lock);
188	} else
189		/* GCC needs to follow the Yellow Brick Road */
190		lock_state = -1;
191
192	/*
193	 * We put ourselves on the sleep queue and start our timeout
194	 * before calling thread_suspend_check, as we could stop there,
195	 * and a wakeup or a SIGCONT (or both) could occur while we were
196	 * stopped without resuming us.  Thus, we must be ready for sleep
197	 * when cursig() is called.  If the wakeup happens while we're
198	 * stopped, then td will no longer be on a sleep queue upon
199	 * return from cursig().
200	 */
201	sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
202	if (timo)
203		sleepq_set_timeout(ident, timo);
204	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
205		sleepq_release(ident);
206		WITNESS_SAVE(lock, lock_witness);
207		lock_state = class->lc_unlock(lock);
208		sleepq_lock(ident);
209	}
210
211	/*
212	 * Adjust this thread's priority, if necessary.
213	 */
214	pri = priority & PRIMASK;
215	if (pri != 0 && pri != td->td_priority) {
216		mtx_lock_spin(&sched_lock);
217		sched_prio(td, pri);
218		mtx_unlock_spin(&sched_lock);
219	}
220
221	if (timo && catch)
222		rval = sleepq_timedwait_sig(ident);
223	else if (timo)
224		rval = sleepq_timedwait(ident);
225	else if (catch)
226		rval = sleepq_wait_sig(ident);
227	else {
228		sleepq_wait(ident);
229		rval = 0;
230	}
231#ifdef KTRACE
232	if (KTRPOINT(td, KTR_CSW))
233		ktrcsw(0, 0);
234#endif
235	PICKUP_GIANT();
236	if (lock != NULL && !(priority & PDROP)) {
237		class->lc_lock(lock, lock_state);
238		WITNESS_RESTORE(lock, lock_witness);
239	}
240	return (rval);
241}
242
243int
244msleep_spin(ident, mtx, wmesg, timo)
245	void *ident;
246	struct mtx *mtx;
247	const char *wmesg;
248	int timo;
249{
250	struct thread *td;
251	struct proc *p;
252	int rval;
253	WITNESS_SAVE_DECL(mtx);
254
255	td = curthread;
256	p = td->td_proc;
257	KASSERT(mtx != NULL, ("sleeping without a mutex"));
258	KASSERT(p != NULL, ("msleep1"));
259	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
260
261	if (cold) {
262		/*
263		 * During autoconfiguration, just return;
264		 * don't run any other threads or panic below,
265		 * in case this is the idle thread and already asleep.
266		 * XXX: this used to do "s = splhigh(); splx(safepri);
267		 * splx(s);" to give interrupts a chance, but there is
268		 * no way to give interrupts a chance now.
269		 */
270		return (0);
271	}
272
273	sleepq_lock(ident);
274	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
275	    td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
276
277	DROP_GIANT();
278	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
279	WITNESS_SAVE(&mtx->lock_object, mtx);
280	mtx_unlock_spin(mtx);
281
282	/*
283	 * We put ourselves on the sleep queue and start our timeout.
284	 */
285	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
286	if (timo)
287		sleepq_set_timeout(ident, timo);
288
289	/*
290	 * Can't call ktrace with any spin locks held so it can lock the
291	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
292	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
293	 * we handle those requests.  This is safe since we have placed our
294	 * thread on the sleep queue already.
295	 */
296#ifdef KTRACE
297	if (KTRPOINT(td, KTR_CSW)) {
298		sleepq_release(ident);
299		ktrcsw(1, 0);
300		sleepq_lock(ident);
301	}
302#endif
303#ifdef WITNESS
304	sleepq_release(ident);
305	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
306	    wmesg);
307	sleepq_lock(ident);
308#endif
309	if (timo)
310		rval = sleepq_timedwait(ident);
311	else {
312		sleepq_wait(ident);
313		rval = 0;
314	}
315#ifdef KTRACE
316	if (KTRPOINT(td, KTR_CSW))
317		ktrcsw(0, 0);
318#endif
319	PICKUP_GIANT();
320	mtx_lock_spin(mtx);
321	WITNESS_RESTORE(&mtx->lock_object, mtx);
322	return (rval);
323}
324
325/*
326 * pause() is like tsleep() except that the intention is to not be
327 * explicitly woken up by another thread.  Instead, the current thread
328 * simply wishes to sleep until the timeout expires.  It is
329 * implemented using a dummy wait channel.
330 */
331int
332pause(wmesg, timo)
333	const char *wmesg;
334	int timo;
335{
336
337	KASSERT(timo != 0, ("pause: timeout required"));
338	return (tsleep(&pause_wchan, 0, wmesg, timo));
339}
340
341/*
342 * Make all threads sleeping on the specified identifier runnable.
343 */
344void
345wakeup(ident)
346	register void *ident;
347{
348
349	sleepq_lock(ident);
350	sleepq_broadcast(ident, SLEEPQ_SLEEP, -1, 0);
351}
352
353/*
354 * Make a thread sleeping on the specified identifier runnable.
355 * May wake more than one thread if a target thread is currently
356 * swapped out.
357 */
358void
359wakeup_one(ident)
360	register void *ident;
361{
362
363	sleepq_lock(ident);
364	sleepq_signal(ident, SLEEPQ_SLEEP, -1, 0);
365}
366
367/*
368 * The machine independent parts of context switching.
369 */
370void
371mi_switch(int flags, struct thread *newtd)
372{
373	uint64_t new_switchtime;
374	struct thread *td;
375	struct proc *p;
376
377	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
378	td = curthread;			/* XXX */
379	p = td->td_proc;		/* XXX */
380	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
381#ifdef INVARIANTS
382	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
383		mtx_assert(&Giant, MA_NOTOWNED);
384#endif
385	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
386	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
387	    newtd == NULL) || panicstr,
388	    ("mi_switch: switch in a critical section"));
389	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
390	    ("mi_switch: switch must be voluntary or involuntary"));
391	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
392
393	/*
394	 * Don't perform context switches from the debugger.
395	 */
396	if (kdb_active) {
397		mtx_unlock_spin(&sched_lock);
398		kdb_backtrace();
399		kdb_reenter();
400		panic("%s: did not reenter debugger", __func__);
401	}
402
403	if (flags & SW_VOL)
404		td->td_ru.ru_nvcsw++;
405	else
406		td->td_ru.ru_nivcsw++;
407	/*
408	 * Compute the amount of time during which the current
409	 * thread was running, and add that to its total so far.
410	 */
411	new_switchtime = cpu_ticks();
412	td->td_runtime += new_switchtime - PCPU_GET(switchtime);
413	PCPU_SET(switchtime, new_switchtime);
414	td->td_generation++;	/* bump preempt-detect counter */
415	cnt.v_swtch++;
416	PCPU_SET(switchticks, ticks);
417	CTR4(KTR_PROC, "mi_switch: old thread %ld (kse %p, pid %ld, %s)",
418	    td->td_tid, td->td_sched, p->p_pid, p->p_comm);
419#if (KTR_COMPILE & KTR_SCHED) != 0
420	if (TD_IS_IDLETHREAD(td))
421		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
422		    td, td->td_proc->p_comm, td->td_priority);
423	else if (newtd != NULL)
424		CTR5(KTR_SCHED,
425		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
426		    td, td->td_proc->p_comm, td->td_priority, newtd,
427		    newtd->td_proc->p_comm);
428	else
429		CTR6(KTR_SCHED,
430		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
431		    td, td->td_proc->p_comm, td->td_priority,
432		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
433#endif
434	/*
435	 * We call thread_switchout after the KTR_SCHED prints above so kse
436	 * selecting a new thread to run does not show up as a preemption.
437	 */
438#ifdef KSE
439	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
440		newtd = thread_switchout(td, flags, newtd);
441#endif
442	sched_switch(td, newtd, flags);
443	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
444	    td, td->td_proc->p_comm, td->td_priority);
445
446	CTR4(KTR_PROC, "mi_switch: new thread %ld (kse %p, pid %ld, %s)",
447	    td->td_tid, td->td_sched, p->p_pid, p->p_comm);
448
449	/*
450	 * If the last thread was exiting, finish cleaning it up.
451	 */
452	if ((td = PCPU_GET(deadthread))) {
453		PCPU_SET(deadthread, NULL);
454		thread_stash(td);
455	}
456}
457
458/*
459 * Change process state to be runnable,
460 * placing it on the run queue if it is in memory,
461 * and awakening the swapper if it isn't in memory.
462 */
463void
464setrunnable(struct thread *td)
465{
466	struct proc *p;
467
468	p = td->td_proc;
469	mtx_assert(&sched_lock, MA_OWNED);
470	switch (p->p_state) {
471	case PRS_ZOMBIE:
472		panic("setrunnable(1)");
473	default:
474		break;
475	}
476	switch (td->td_state) {
477	case TDS_RUNNING:
478	case TDS_RUNQ:
479		return;
480	case TDS_INHIBITED:
481		/*
482		 * If we are only inhibited because we are swapped out
483		 * then arange to swap in this process. Otherwise just return.
484		 */
485		if (td->td_inhibitors != TDI_SWAPPED)
486			return;
487		/* XXX: intentional fall-through ? */
488	case TDS_CAN_RUN:
489		break;
490	default:
491		printf("state is 0x%x", td->td_state);
492		panic("setrunnable(2)");
493	}
494	if ((p->p_sflag & PS_INMEM) == 0) {
495		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
496			p->p_sflag |= PS_SWAPINREQ;
497			/*
498			 * due to a LOR between sched_lock and
499			 * the sleepqueue chain locks, use
500			 * lower level scheduling functions.
501			 */
502			kick_proc0();
503		}
504	} else
505		sched_wakeup(td);
506}
507
508/*
509 * Compute a tenex style load average of a quantity on
510 * 1, 5 and 15 minute intervals.
511 * XXXKSE   Needs complete rewrite when correct info is available.
512 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
513 */
514static void
515loadav(void *arg)
516{
517	int i, nrun;
518	struct loadavg *avg;
519
520	nrun = sched_load();
521	avg = &averunnable;
522
523	for (i = 0; i < 3; i++)
524		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
525		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
526
527	/*
528	 * Schedule the next update to occur after 5 seconds, but add a
529	 * random variation to avoid synchronisation with processes that
530	 * run at regular intervals.
531	 */
532	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
533	    loadav, NULL);
534}
535
536static void
537lboltcb(void *arg)
538{
539	wakeup(&lbolt);
540	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
541}
542
543/* ARGSUSED */
544static void
545synch_setup(dummy)
546	void *dummy;
547{
548	callout_init(&loadav_callout, CALLOUT_MPSAFE);
549	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
550
551	/* Kick off timeout driven events by calling first time. */
552	loadav(NULL);
553	lboltcb(NULL);
554}
555
556/*
557 * General purpose yield system call.
558 */
559int
560yield(struct thread *td, struct yield_args *uap)
561{
562	mtx_assert(&Giant, MA_NOTOWNED);
563	(void)uap;
564	sched_relinquish(td);
565	return (0);
566}
567