kern_synch.c revision 167327
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 167327 2007-03-08 06:44:34Z julian $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72static int pause_wchan;
73
74static struct callout loadav_callout;
75static struct callout lbolt_callout;
76
77struct loadavg averunnable =
78	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79/*
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
82 */
83static fixpt_t cexp[3] = {
84	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87};
88
89/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90static int      fscale __unused = FSCALE;
91SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92
93static void	loadav(void *arg);
94static void	lboltcb(void *arg);
95
96void
97sleepinit(void)
98{
99
100	hogticks = (hz / 10) * 2;	/* Default only. */
101	init_sleepqueues();
102}
103
104/*
105 * General sleep call.  Suspends the current thread until a wakeup is
106 * performed on the specified identifier.  The thread will then be made
107 * runnable with the specified priority.  Sleeps at most timo/hz seconds
108 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked.  Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 *
115 * The mutex argument is unlocked before the caller is suspended, and
116 * re-locked before msleep returns.  If priority includes the PDROP
117 * flag the mutex is not re-locked before returning.
118 */
119int
120msleep(ident, mtx, priority, wmesg, timo)
121	void *ident;
122	struct mtx *mtx;
123	int priority, timo;
124	const char *wmesg;
125{
126	struct thread *td;
127	struct proc *p;
128	int catch, rval, flags, pri;
129	WITNESS_SAVE_DECL(mtx);
130
131	td = curthread;
132	p = td->td_proc;
133#ifdef KTRACE
134	if (KTRPOINT(td, KTR_CSW))
135		ktrcsw(1, 0);
136#endif
137	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
138	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
139	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL ||
140	    ident == &lbolt, ("sleeping without a mutex"));
141	KASSERT(p != NULL, ("msleep1"));
142	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
143
144	if (cold) {
145		/*
146		 * During autoconfiguration, just return;
147		 * don't run any other threads or panic below,
148		 * in case this is the idle thread and already asleep.
149		 * XXX: this used to do "s = splhigh(); splx(safepri);
150		 * splx(s);" to give interrupts a chance, but there is
151		 * no way to give interrupts a chance now.
152		 */
153		if (mtx != NULL && priority & PDROP)
154			mtx_unlock(mtx);
155		return (0);
156	}
157	catch = priority & PCATCH;
158	rval = 0;
159
160	/*
161	 * If we are already on a sleep queue, then remove us from that
162	 * sleep queue first.  We have to do this to handle recursive
163	 * sleeps.
164	 */
165	if (TD_ON_SLEEPQ(td))
166		sleepq_remove(td, td->td_wchan);
167
168	if (ident == &pause_wchan)
169		flags = SLEEPQ_PAUSE;
170	else
171		flags = SLEEPQ_MSLEEP;
172	if (catch)
173		flags |= SLEEPQ_INTERRUPTIBLE;
174
175	sleepq_lock(ident);
176	CTR5(KTR_PROC, "msleep: thread %ld (pid %ld, %s) on %s (%p)",
177	    td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
178
179	DROP_GIANT();
180	if (mtx != NULL) {
181		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
182		WITNESS_SAVE(&mtx->mtx_object, mtx);
183		mtx_unlock(mtx);
184	}
185
186	/*
187	 * We put ourselves on the sleep queue and start our timeout
188	 * before calling thread_suspend_check, as we could stop there,
189	 * and a wakeup or a SIGCONT (or both) could occur while we were
190	 * stopped without resuming us.  Thus, we must be ready for sleep
191	 * when cursig() is called.  If the wakeup happens while we're
192	 * stopped, then td will no longer be on a sleep queue upon
193	 * return from cursig().
194	 */
195	sleepq_add(ident, ident == &lbolt ? NULL : &mtx->mtx_object, wmesg,
196	    flags, 0);
197	if (timo)
198		sleepq_set_timeout(ident, timo);
199
200	/*
201	 * Adjust this thread's priority, if necessary.
202	 */
203	pri = priority & PRIMASK;
204	if (pri != 0 && pri != td->td_priority) {
205		mtx_lock_spin(&sched_lock);
206		sched_prio(td, pri);
207		mtx_unlock_spin(&sched_lock);
208	}
209
210	if (timo && catch)
211		rval = sleepq_timedwait_sig(ident);
212	else if (timo)
213		rval = sleepq_timedwait(ident);
214	else if (catch)
215		rval = sleepq_wait_sig(ident);
216	else {
217		sleepq_wait(ident);
218		rval = 0;
219	}
220#ifdef KTRACE
221	if (KTRPOINT(td, KTR_CSW))
222		ktrcsw(0, 0);
223#endif
224	PICKUP_GIANT();
225	if (mtx != NULL && !(priority & PDROP)) {
226		mtx_lock(mtx);
227		WITNESS_RESTORE(&mtx->mtx_object, mtx);
228	}
229	return (rval);
230}
231
232int
233msleep_spin(ident, mtx, wmesg, timo)
234	void *ident;
235	struct mtx *mtx;
236	const char *wmesg;
237	int timo;
238{
239	struct thread *td;
240	struct proc *p;
241	int rval;
242	WITNESS_SAVE_DECL(mtx);
243
244	td = curthread;
245	p = td->td_proc;
246	KASSERT(mtx != NULL, ("sleeping without a mutex"));
247	KASSERT(p != NULL, ("msleep1"));
248	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
249
250	if (cold) {
251		/*
252		 * During autoconfiguration, just return;
253		 * don't run any other threads or panic below,
254		 * in case this is the idle thread and already asleep.
255		 * XXX: this used to do "s = splhigh(); splx(safepri);
256		 * splx(s);" to give interrupts a chance, but there is
257		 * no way to give interrupts a chance now.
258		 */
259		return (0);
260	}
261
262	sleepq_lock(ident);
263	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
264	    td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
265
266	DROP_GIANT();
267	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
268	WITNESS_SAVE(&mtx->mtx_object, mtx);
269	mtx_unlock_spin(mtx);
270
271	/*
272	 * We put ourselves on the sleep queue and start our timeout.
273	 */
274	sleepq_add(ident, &mtx->mtx_object, wmesg, SLEEPQ_MSLEEP, 0);
275	if (timo)
276		sleepq_set_timeout(ident, timo);
277
278	/*
279	 * Can't call ktrace with any spin locks held so it can lock the
280	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
281	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
282	 * we handle those requests.  This is safe since we have placed our
283	 * thread on the sleep queue already.
284	 */
285#ifdef KTRACE
286	if (KTRPOINT(td, KTR_CSW)) {
287		sleepq_release(ident);
288		ktrcsw(1, 0);
289		sleepq_lock(ident);
290	}
291#endif
292#ifdef WITNESS
293	sleepq_release(ident);
294	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
295	    wmesg);
296	sleepq_lock(ident);
297#endif
298	if (timo)
299		rval = sleepq_timedwait(ident);
300	else {
301		sleepq_wait(ident);
302		rval = 0;
303	}
304#ifdef KTRACE
305	if (KTRPOINT(td, KTR_CSW))
306		ktrcsw(0, 0);
307#endif
308	PICKUP_GIANT();
309	mtx_lock_spin(mtx);
310	WITNESS_RESTORE(&mtx->mtx_object, mtx);
311	return (rval);
312}
313
314/*
315 * pause() is like tsleep() except that the intention is to not be
316 * explicitly woken up by another thread.  Instead, the current thread
317 * simply wishes to sleep until the timeout expires.  It is
318 * implemented using a dummy wait channel.
319 */
320int
321pause(wmesg, timo)
322	const char *wmesg;
323	int timo;
324{
325
326	KASSERT(timo != 0, ("pause: timeout required"));
327	return (tsleep(&pause_wchan, 0, wmesg, timo));
328}
329
330/*
331 * Make all threads sleeping on the specified identifier runnable.
332 */
333void
334wakeup(ident)
335	register void *ident;
336{
337
338	sleepq_lock(ident);
339	sleepq_broadcast(ident, SLEEPQ_MSLEEP, -1, 0);
340}
341
342/*
343 * Make a thread sleeping on the specified identifier runnable.
344 * May wake more than one thread if a target thread is currently
345 * swapped out.
346 */
347void
348wakeup_one(ident)
349	register void *ident;
350{
351
352	sleepq_lock(ident);
353	sleepq_signal(ident, SLEEPQ_MSLEEP, -1, 0);
354}
355
356/*
357 * The machine independent parts of context switching.
358 */
359void
360mi_switch(int flags, struct thread *newtd)
361{
362	uint64_t new_switchtime;
363	struct thread *td;
364	struct proc *p;
365
366	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
367	td = curthread;			/* XXX */
368	p = td->td_proc;		/* XXX */
369	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
370#ifdef INVARIANTS
371	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
372		mtx_assert(&Giant, MA_NOTOWNED);
373#endif
374	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
375	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
376	    newtd == NULL) || panicstr,
377	    ("mi_switch: switch in a critical section"));
378	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
379	    ("mi_switch: switch must be voluntary or involuntary"));
380	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
381
382	/*
383	 * Don't perform context switches from the debugger.
384	 */
385	if (kdb_active) {
386		mtx_unlock_spin(&sched_lock);
387		kdb_backtrace();
388		kdb_reenter();
389		panic("%s: did not reenter debugger", __func__);
390	}
391
392	if (flags & SW_VOL)
393		p->p_stats->p_ru.ru_nvcsw++;
394	else
395		p->p_stats->p_ru.ru_nivcsw++;
396
397	/*
398	 * Compute the amount of time during which the current
399	 * process was running, and add that to its total so far.
400	 */
401	new_switchtime = cpu_ticks();
402	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
403	p->p_rux.rux_uticks += td->td_uticks;
404	td->td_uticks = 0;
405	p->p_rux.rux_iticks += td->td_iticks;
406	td->td_iticks = 0;
407	p->p_rux.rux_sticks += td->td_sticks;
408	td->td_sticks = 0;
409
410	td->td_generation++;	/* bump preempt-detect counter */
411
412	/*
413	 * Check if the process exceeds its cpu resource allocation.  If
414	 * it reaches the max, arrange to kill the process in ast().
415	 */
416	if (p->p_cpulimit != RLIM_INFINITY &&
417	    p->p_rux.rux_runtime >= p->p_cpulimit * cpu_tickrate()) {
418		p->p_sflag |= PS_XCPU;
419		td->td_flags |= TDF_ASTPENDING;
420	}
421
422	/*
423	 * Finish up stats for outgoing thread.
424	 */
425	cnt.v_swtch++;
426	PCPU_SET(switchtime, new_switchtime);
427	PCPU_SET(switchticks, ticks);
428	CTR4(KTR_PROC, "mi_switch: old thread %ld (kse %p, pid %ld, %s)",
429	    td->td_tid, td->td_sched, p->p_pid, p->p_comm);
430#if (KTR_COMPILE & KTR_SCHED) != 0
431	if (TD_IS_IDLETHREAD(td))
432		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
433		    td, td->td_proc->p_comm, td->td_priority);
434	else if (newtd != NULL)
435		CTR5(KTR_SCHED,
436		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
437		    td, td->td_proc->p_comm, td->td_priority, newtd,
438		    newtd->td_proc->p_comm);
439	else
440		CTR6(KTR_SCHED,
441		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
442		    td, td->td_proc->p_comm, td->td_priority,
443		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
444#endif
445	/*
446	 * We call thread_switchout after the KTR_SCHED prints above so kse
447	 * selecting a new thread to run does not show up as a preemption.
448	 */
449#ifdef KSE
450	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
451		newtd = thread_switchout(td, flags, newtd);
452#endif
453	sched_switch(td, newtd, flags);
454	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
455	    td, td->td_proc->p_comm, td->td_priority);
456
457	CTR4(KTR_PROC, "mi_switch: new thread %ld (kse %p, pid %ld, %s)",
458	    td->td_tid, td->td_sched, p->p_pid, p->p_comm);
459
460	/*
461	 * If the last thread was exiting, finish cleaning it up.
462	 */
463	if ((td = PCPU_GET(deadthread))) {
464		PCPU_SET(deadthread, NULL);
465		thread_stash(td);
466	}
467}
468
469/*
470 * Change process state to be runnable,
471 * placing it on the run queue if it is in memory,
472 * and awakening the swapper if it isn't in memory.
473 */
474void
475setrunnable(struct thread *td)
476{
477	struct proc *p;
478
479	p = td->td_proc;
480	mtx_assert(&sched_lock, MA_OWNED);
481	switch (p->p_state) {
482	case PRS_ZOMBIE:
483		panic("setrunnable(1)");
484	default:
485		break;
486	}
487	switch (td->td_state) {
488	case TDS_RUNNING:
489	case TDS_RUNQ:
490		return;
491	case TDS_INHIBITED:
492		/*
493		 * If we are only inhibited because we are swapped out
494		 * then arange to swap in this process. Otherwise just return.
495		 */
496		if (td->td_inhibitors != TDI_SWAPPED)
497			return;
498		/* XXX: intentional fall-through ? */
499	case TDS_CAN_RUN:
500		break;
501	default:
502		printf("state is 0x%x", td->td_state);
503		panic("setrunnable(2)");
504	}
505	if ((p->p_sflag & PS_INMEM) == 0) {
506		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
507			p->p_sflag |= PS_SWAPINREQ;
508			/*
509			 * due to a LOR between sched_lock and
510			 * the sleepqueue chain locks, use
511			 * lower level scheduling functions.
512			 */
513			kick_proc0();
514		}
515	} else
516		sched_wakeup(td);
517}
518
519/*
520 * Compute a tenex style load average of a quantity on
521 * 1, 5 and 15 minute intervals.
522 * XXXKSE   Needs complete rewrite when correct info is available.
523 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
524 */
525static void
526loadav(void *arg)
527{
528	int i, nrun;
529	struct loadavg *avg;
530
531	nrun = sched_load();
532	avg = &averunnable;
533
534	for (i = 0; i < 3; i++)
535		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
536		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
537
538	/*
539	 * Schedule the next update to occur after 5 seconds, but add a
540	 * random variation to avoid synchronisation with processes that
541	 * run at regular intervals.
542	 */
543	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
544	    loadav, NULL);
545}
546
547static void
548lboltcb(void *arg)
549{
550	wakeup(&lbolt);
551	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
552}
553
554/* ARGSUSED */
555static void
556synch_setup(dummy)
557	void *dummy;
558{
559	callout_init(&loadav_callout, CALLOUT_MPSAFE);
560	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
561
562	/* Kick off timeout driven events by calling first time. */
563	loadav(NULL);
564	lboltcb(NULL);
565}
566
567/*
568 * General purpose yield system call.
569 */
570int
571yield(struct thread *td, struct yield_args *uap)
572{
573	mtx_assert(&Giant, MA_NOTOWNED);
574	(void)uap;
575	sched_relinquish(td);
576	return (0);
577}
578