kern_synch.c revision 155932
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 155932 2006-02-23 00:13:58Z davidxu $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72
73static struct callout loadav_callout;
74static struct callout lbolt_callout;
75
76struct loadavg averunnable =
77	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
78/*
79 * Constants for averages over 1, 5, and 15 minutes
80 * when sampling at 5 second intervals.
81 */
82static fixpt_t cexp[3] = {
83	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
84	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
85	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
86};
87
88/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
89static int      fscale __unused = FSCALE;
90SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
91
92static void	loadav(void *arg);
93static void	lboltcb(void *arg);
94
95void
96sleepinit(void)
97{
98
99	hogticks = (hz / 10) * 2;	/* Default only. */
100	init_sleepqueues();
101}
102
103/*
104 * General sleep call.  Suspends the current thread until a wakeup is
105 * performed on the specified identifier.  The thread will then be made
106 * runnable with the specified priority.  Sleeps at most timo/hz seconds
107 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked.  Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
113 *
114 * The mutex argument is unlocked before the caller is suspended, and
115 * re-locked before msleep returns.  If priority includes the PDROP
116 * flag the mutex is not re-locked before returning.
117 */
118int
119msleep(ident, mtx, priority, wmesg, timo)
120	void *ident;
121	struct mtx *mtx;
122	int priority, timo;
123	const char *wmesg;
124{
125	struct thread *td;
126	struct proc *p;
127	int catch, rval, flags;
128	WITNESS_SAVE_DECL(mtx);
129
130	td = curthread;
131	p = td->td_proc;
132#ifdef KTRACE
133	if (KTRPOINT(td, KTR_CSW))
134		ktrcsw(1, 0);
135#endif
136	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
137	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
138	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
139	    ("sleeping without a mutex"));
140	KASSERT(p != NULL, ("msleep1"));
141	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
142
143	if (cold) {
144		/*
145		 * During autoconfiguration, just return;
146		 * don't run any other threads or panic below,
147		 * in case this is the idle thread and already asleep.
148		 * XXX: this used to do "s = splhigh(); splx(safepri);
149		 * splx(s);" to give interrupts a chance, but there is
150		 * no way to give interrupts a chance now.
151		 */
152		if (mtx != NULL && priority & PDROP)
153			mtx_unlock(mtx);
154		return (0);
155	}
156	catch = priority & PCATCH;
157	rval = 0;
158
159	/*
160	 * If we are already on a sleep queue, then remove us from that
161	 * sleep queue first.  We have to do this to handle recursive
162	 * sleeps.
163	 */
164	if (TD_ON_SLEEPQ(td))
165		sleepq_remove(td, td->td_wchan);
166
167	flags = SLEEPQ_MSLEEP;
168	if (catch)
169		flags |= SLEEPQ_INTERRUPTIBLE;
170
171	sleepq_lock(ident);
172	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
173	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
174
175	DROP_GIANT();
176	if (mtx != NULL) {
177		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
178		WITNESS_SAVE(&mtx->mtx_object, mtx);
179		mtx_unlock(mtx);
180	}
181
182	/*
183	 * We put ourselves on the sleep queue and start our timeout
184	 * before calling thread_suspend_check, as we could stop there,
185	 * and a wakeup or a SIGCONT (or both) could occur while we were
186	 * stopped without resuming us.  Thus, we must be ready for sleep
187	 * when cursig() is called.  If the wakeup happens while we're
188	 * stopped, then td will no longer be on a sleep queue upon
189	 * return from cursig().
190	 */
191	sleepq_add(ident, mtx, wmesg, flags);
192	if (timo)
193		sleepq_set_timeout(ident, timo);
194
195	/*
196	 * Adjust this thread's priority.
197	 */
198	mtx_lock_spin(&sched_lock);
199	sched_prio(td, priority & PRIMASK);
200	mtx_unlock_spin(&sched_lock);
201
202	if (timo && catch)
203		rval = sleepq_timedwait_sig(ident);
204	else if (timo)
205		rval = sleepq_timedwait(ident);
206	else if (catch)
207		rval = sleepq_wait_sig(ident);
208	else {
209		sleepq_wait(ident);
210		rval = 0;
211	}
212#ifdef KTRACE
213	if (KTRPOINT(td, KTR_CSW))
214		ktrcsw(0, 0);
215#endif
216	PICKUP_GIANT();
217	if (mtx != NULL && !(priority & PDROP)) {
218		mtx_lock(mtx);
219		WITNESS_RESTORE(&mtx->mtx_object, mtx);
220	}
221	return (rval);
222}
223
224int
225msleep_spin(ident, mtx, wmesg, timo)
226	void *ident;
227	struct mtx *mtx;
228	const char *wmesg;
229	int timo;
230{
231	struct thread *td;
232	struct proc *p;
233	int rval;
234	WITNESS_SAVE_DECL(mtx);
235
236	td = curthread;
237	p = td->td_proc;
238	KASSERT(mtx != NULL, ("sleeping without a mutex"));
239	KASSERT(p != NULL, ("msleep1"));
240	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
241
242	if (cold) {
243		/*
244		 * During autoconfiguration, just return;
245		 * don't run any other threads or panic below,
246		 * in case this is the idle thread and already asleep.
247		 * XXX: this used to do "s = splhigh(); splx(safepri);
248		 * splx(s);" to give interrupts a chance, but there is
249		 * no way to give interrupts a chance now.
250		 */
251		return (0);
252	}
253
254	sleepq_lock(ident);
255	CTR5(KTR_PROC, "msleep_spin: thread %p (pid %ld, %s) on %s (%p)",
256	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
257
258	DROP_GIANT();
259	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
260	WITNESS_SAVE(&mtx->mtx_object, mtx);
261	mtx_unlock_spin(mtx);
262
263	/*
264	 * We put ourselves on the sleep queue and start our timeout.
265	 */
266	sleepq_add(ident, mtx, wmesg, SLEEPQ_MSLEEP);
267	if (timo)
268		sleepq_set_timeout(ident, timo);
269
270	/*
271	 * Can't call ktrace with any spin locks held so it can lock the
272	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
273	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
274	 * we handle those requests.  This is safe since we have placed our
275	 * thread on the sleep queue already.
276	 */
277#ifdef KTRACE
278	if (KTRPOINT(td, KTR_CSW)) {
279		sleepq_release(ident);
280		ktrcsw(1, 0);
281		sleepq_lock(ident);
282	}
283#endif
284#ifdef WITNESS
285	sleepq_release(ident);
286	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
287	    wmesg);
288	sleepq_lock(ident);
289#endif
290	if (timo)
291		rval = sleepq_timedwait(ident);
292	else {
293		sleepq_wait(ident);
294		rval = 0;
295	}
296#ifdef KTRACE
297	if (KTRPOINT(td, KTR_CSW))
298		ktrcsw(0, 0);
299#endif
300	PICKUP_GIANT();
301	mtx_lock_spin(mtx);
302	WITNESS_RESTORE(&mtx->mtx_object, mtx);
303	return (rval);
304}
305
306/*
307 * Make all threads sleeping on the specified identifier runnable.
308 */
309void
310wakeup(ident)
311	register void *ident;
312{
313
314	sleepq_lock(ident);
315	sleepq_broadcast(ident, SLEEPQ_MSLEEP, -1);
316}
317
318/*
319 * Make a thread sleeping on the specified identifier runnable.
320 * May wake more than one thread if a target thread is currently
321 * swapped out.
322 */
323void
324wakeup_one(ident)
325	register void *ident;
326{
327
328	sleepq_lock(ident);
329	sleepq_signal(ident, SLEEPQ_MSLEEP, -1);
330}
331
332/*
333 * The machine independent parts of context switching.
334 */
335void
336mi_switch(int flags, struct thread *newtd)
337{
338	uint64_t new_switchtime;
339	struct thread *td;
340	struct proc *p;
341
342	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
343	td = curthread;			/* XXX */
344	p = td->td_proc;		/* XXX */
345	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
346#ifdef INVARIANTS
347	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
348		mtx_assert(&Giant, MA_NOTOWNED);
349#endif
350	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
351	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
352	    newtd == NULL) || panicstr,
353	    ("mi_switch: switch in a critical section"));
354	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
355	    ("mi_switch: switch must be voluntary or involuntary"));
356	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
357
358	if (flags & SW_VOL)
359		p->p_stats->p_ru.ru_nvcsw++;
360	else
361		p->p_stats->p_ru.ru_nivcsw++;
362
363	/*
364	 * Compute the amount of time during which the current
365	 * process was running, and add that to its total so far.
366	 */
367	new_switchtime = cpu_ticks();
368	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
369	p->p_rux.rux_uticks += td->td_uticks;
370	td->td_uticks = 0;
371	p->p_rux.rux_iticks += td->td_iticks;
372	td->td_iticks = 0;
373	p->p_rux.rux_sticks += td->td_sticks;
374	td->td_sticks = 0;
375
376	td->td_generation++;	/* bump preempt-detect counter */
377
378	/*
379	 * Don't perform context switches from the debugger.
380	 */
381	if (kdb_active) {
382		mtx_unlock_spin(&sched_lock);
383		kdb_backtrace();
384		kdb_reenter();
385		panic("%s: did not reenter debugger", __func__);
386	}
387
388	/*
389	 * Check if the process exceeds its cpu resource allocation.  If
390	 * it reaches the max, arrange to kill the process in ast().
391	 */
392	if (p->p_cpulimit != RLIM_INFINITY &&
393	    p->p_rux.rux_runtime >= p->p_cpulimit * cpu_tickrate()) {
394		p->p_sflag |= PS_XCPU;
395		td->td_flags |= TDF_ASTPENDING;
396	}
397
398	/*
399	 * Finish up stats for outgoing thread.
400	 */
401	cnt.v_swtch++;
402	PCPU_SET(switchtime, new_switchtime);
403	PCPU_SET(switchticks, ticks);
404	CTR4(KTR_PROC, "mi_switch: old thread %p (kse %p, pid %ld, %s)",
405	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
406	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
407		newtd = thread_switchout(td, flags, newtd);
408#if (KTR_COMPILE & KTR_SCHED) != 0
409	if (td == PCPU_GET(idlethread))
410		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
411		    td, td->td_proc->p_comm, td->td_priority);
412	else if (newtd != NULL)
413		CTR5(KTR_SCHED,
414		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
415		    td, td->td_proc->p_comm, td->td_priority, newtd,
416		    newtd->td_proc->p_comm);
417	else
418		CTR6(KTR_SCHED,
419		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
420		    td, td->td_proc->p_comm, td->td_priority,
421		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
422#endif
423	sched_switch(td, newtd, flags);
424	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
425	    td, td->td_proc->p_comm, td->td_priority);
426
427	CTR4(KTR_PROC, "mi_switch: new thread %p (kse %p, pid %ld, %s)",
428	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
429
430	/*
431	 * If the last thread was exiting, finish cleaning it up.
432	 */
433	if ((td = PCPU_GET(deadthread))) {
434		PCPU_SET(deadthread, NULL);
435		thread_stash(td);
436	}
437}
438
439/*
440 * Change process state to be runnable,
441 * placing it on the run queue if it is in memory,
442 * and awakening the swapper if it isn't in memory.
443 */
444void
445setrunnable(struct thread *td)
446{
447	struct proc *p;
448
449	p = td->td_proc;
450	mtx_assert(&sched_lock, MA_OWNED);
451	switch (p->p_state) {
452	case PRS_ZOMBIE:
453		panic("setrunnable(1)");
454	default:
455		break;
456	}
457	switch (td->td_state) {
458	case TDS_RUNNING:
459	case TDS_RUNQ:
460		return;
461	case TDS_INHIBITED:
462		/*
463		 * If we are only inhibited because we are swapped out
464		 * then arange to swap in this process. Otherwise just return.
465		 */
466		if (td->td_inhibitors != TDI_SWAPPED)
467			return;
468		/* XXX: intentional fall-through ? */
469	case TDS_CAN_RUN:
470		break;
471	default:
472		printf("state is 0x%x", td->td_state);
473		panic("setrunnable(2)");
474	}
475	if ((p->p_sflag & PS_INMEM) == 0) {
476		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
477			p->p_sflag |= PS_SWAPINREQ;
478			/*
479			 * due to a LOR between sched_lock and
480			 * the sleepqueue chain locks, use
481			 * lower level scheduling functions.
482			 */
483			kick_proc0();
484		}
485	} else
486		sched_wakeup(td);
487}
488
489/*
490 * Compute a tenex style load average of a quantity on
491 * 1, 5 and 15 minute intervals.
492 * XXXKSE   Needs complete rewrite when correct info is available.
493 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
494 */
495static void
496loadav(void *arg)
497{
498	int i, nrun;
499	struct loadavg *avg;
500
501	nrun = sched_load();
502	avg = &averunnable;
503
504	for (i = 0; i < 3; i++)
505		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
506		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
507
508	/*
509	 * Schedule the next update to occur after 5 seconds, but add a
510	 * random variation to avoid synchronisation with processes that
511	 * run at regular intervals.
512	 */
513	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
514	    loadav, NULL);
515}
516
517static void
518lboltcb(void *arg)
519{
520	wakeup(&lbolt);
521	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
522}
523
524/* ARGSUSED */
525static void
526synch_setup(dummy)
527	void *dummy;
528{
529	callout_init(&loadav_callout, CALLOUT_MPSAFE);
530	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
531
532	/* Kick off timeout driven events by calling first time. */
533	loadav(NULL);
534	lboltcb(NULL);
535}
536
537/*
538 * General purpose yield system call
539 */
540int
541yield(struct thread *td, struct yield_args *uap)
542{
543	struct ksegrp *kg;
544
545	kg = td->td_ksegrp;
546	mtx_assert(&Giant, MA_NOTOWNED);
547	mtx_lock_spin(&sched_lock);
548	sched_prio(td, PRI_MAX_TIMESHARE);
549	mi_switch(SW_VOL, NULL);
550	mtx_unlock_spin(&sched_lock);
551	td->td_retval[0] = 0;
552	return (0);
553}
554