kern_synch.c revision 153856
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 153856 2005-12-29 21:15:32Z jhb $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72
73static struct callout loadav_callout;
74static struct callout lbolt_callout;
75
76struct loadavg averunnable =
77	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
78/*
79 * Constants for averages over 1, 5, and 15 minutes
80 * when sampling at 5 second intervals.
81 */
82static fixpt_t cexp[3] = {
83	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
84	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
85	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
86};
87
88/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
89static int      fscale __unused = FSCALE;
90SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
91
92static void	loadav(void *arg);
93static void	lboltcb(void *arg);
94
95void
96sleepinit(void)
97{
98
99	hogticks = (hz / 10) * 2;	/* Default only. */
100	init_sleepqueues();
101}
102
103/*
104 * General sleep call.  Suspends the current process until a wakeup is
105 * performed on the specified identifier.  The process will then be made
106 * runnable with the specified priority.  Sleeps at most timo/hz seconds
107 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked.  Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
113 *
114 * The mutex argument is exited before the caller is suspended, and
115 * entered before msleep returns.  If priority includes the PDROP
116 * flag the mutex is not entered before returning.
117 */
118int
119msleep(ident, mtx, priority, wmesg, timo)
120	void *ident;
121	struct mtx *mtx;
122	int priority, timo;
123	const char *wmesg;
124{
125	struct thread *td;
126	struct proc *p;
127	int catch, rval, sig, flags;
128	WITNESS_SAVE_DECL(mtx);
129
130	td = curthread;
131	p = td->td_proc;
132#ifdef KTRACE
133	if (KTRPOINT(td, KTR_CSW))
134		ktrcsw(1, 0);
135#endif
136	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
137	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
138	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
139	    ("sleeping without a mutex"));
140	KASSERT(p != NULL, ("msleep1"));
141	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
142
143	if (cold) {
144		/*
145		 * During autoconfiguration, just return;
146		 * don't run any other threads or panic below,
147		 * in case this is the idle thread and already asleep.
148		 * XXX: this used to do "s = splhigh(); splx(safepri);
149		 * splx(s);" to give interrupts a chance, but there is
150		 * no way to give interrupts a chance now.
151		 */
152		if (mtx != NULL && priority & PDROP)
153			mtx_unlock(mtx);
154		return (0);
155	}
156	catch = priority & PCATCH;
157	rval = 0;
158
159	/*
160	 * If we are already on a sleep queue, then remove us from that
161	 * sleep queue first.  We have to do this to handle recursive
162	 * sleeps.
163	 */
164	if (TD_ON_SLEEPQ(td))
165		sleepq_remove(td, td->td_wchan);
166
167	sleepq_lock(ident);
168	if (catch) {
169		/*
170		 * Don't bother sleeping if we are exiting and not the exiting
171		 * thread or if our thread is marked as interrupted.
172		 */
173		mtx_lock_spin(&sched_lock);
174		rval = thread_sleep_check(td);
175		mtx_unlock_spin(&sched_lock);
176		if (rval != 0) {
177			sleepq_release(ident);
178			if (mtx != NULL && priority & PDROP)
179				mtx_unlock(mtx);
180			return (rval);
181		}
182	}
183	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
184	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
185
186	DROP_GIANT();
187	if (mtx != NULL) {
188		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
189		WITNESS_SAVE(&mtx->mtx_object, mtx);
190		mtx_unlock(mtx);
191	}
192
193	/*
194	 * We put ourselves on the sleep queue and start our timeout
195	 * before calling thread_suspend_check, as we could stop there,
196	 * and a wakeup or a SIGCONT (or both) could occur while we were
197	 * stopped without resuming us.  Thus, we must be ready for sleep
198	 * when cursig() is called.  If the wakeup happens while we're
199	 * stopped, then td will no longer be on a sleep queue upon
200	 * return from cursig().
201	 */
202	flags = SLEEPQ_MSLEEP;
203	if (catch)
204		flags |= SLEEPQ_INTERRUPTIBLE;
205	sleepq_add(ident, mtx, wmesg, flags);
206	if (timo)
207		sleepq_set_timeout(ident, timo);
208	if (catch) {
209		sig = sleepq_catch_signals(ident);
210	} else
211		sig = 0;
212
213	/*
214	 * Adjust this thread's priority.
215	 */
216	mtx_lock_spin(&sched_lock);
217	sched_prio(td, priority & PRIMASK);
218	mtx_unlock_spin(&sched_lock);
219
220	if (timo && catch)
221		rval = sleepq_timedwait_sig(ident, sig != 0);
222	else if (timo)
223		rval = sleepq_timedwait(ident);
224	else if (catch)
225		rval = sleepq_wait_sig(ident);
226	else {
227		sleepq_wait(ident);
228		rval = 0;
229	}
230	if (rval == 0 && catch)
231		rval = sleepq_calc_signal_retval(sig);
232#ifdef KTRACE
233	if (KTRPOINT(td, KTR_CSW))
234		ktrcsw(0, 0);
235#endif
236	PICKUP_GIANT();
237	if (mtx != NULL && !(priority & PDROP)) {
238		mtx_lock(mtx);
239		WITNESS_RESTORE(&mtx->mtx_object, mtx);
240	}
241	return (rval);
242}
243
244int
245msleep_spin(ident, mtx, wmesg, timo)
246	void *ident;
247	struct mtx *mtx;
248	const char *wmesg;
249	int timo;
250{
251	struct thread *td;
252	struct proc *p;
253	int rval;
254	WITNESS_SAVE_DECL(mtx);
255
256	td = curthread;
257	p = td->td_proc;
258	KASSERT(mtx != NULL, ("sleeping without a mutex"));
259	KASSERT(p != NULL, ("msleep1"));
260	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
261
262	if (cold) {
263		/*
264		 * During autoconfiguration, just return;
265		 * don't run any other threads or panic below,
266		 * in case this is the idle thread and already asleep.
267		 * XXX: this used to do "s = splhigh(); splx(safepri);
268		 * splx(s);" to give interrupts a chance, but there is
269		 * no way to give interrupts a chance now.
270		 */
271		return (0);
272	}
273
274	sleepq_lock(ident);
275	CTR5(KTR_PROC, "msleep_spin: thread %p (pid %ld, %s) on %s (%p)",
276	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
277
278	DROP_GIANT();
279	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
280	WITNESS_SAVE(&mtx->mtx_object, mtx);
281	mtx_unlock_spin(mtx);
282
283	/*
284	 * We put ourselves on the sleep queue and start our timeout.
285	 */
286	sleepq_add(ident, mtx, wmesg, SLEEPQ_MSLEEP);
287	if (timo)
288		sleepq_set_timeout(ident, timo);
289
290	/*
291	 * Can't call ktrace with any spin locks held so it can lock the
292	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
293	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
294	 * we handle those requests.  This is safe since we have placed our
295	 * thread on the sleep queue already.
296	 */
297#ifdef KTRACE
298	if (KTRPOINT(td, KTR_CSW)) {
299		sleepq_release(ident);
300		ktrcsw(1, 0);
301		sleepq_lock(ident);
302	}
303#endif
304#ifdef WITNESS
305	sleepq_release(ident);
306	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
307	    wmesg);
308	sleepq_lock(ident);
309#endif
310	if (timo)
311		rval = sleepq_timedwait(ident);
312	else {
313		sleepq_wait(ident);
314		rval = 0;
315	}
316#ifdef KTRACE
317	if (KTRPOINT(td, KTR_CSW))
318		ktrcsw(0, 0);
319#endif
320	PICKUP_GIANT();
321	mtx_lock_spin(mtx);
322	WITNESS_RESTORE(&mtx->mtx_object, mtx);
323	return (rval);
324}
325
326/*
327 * Make all threads sleeping on the specified identifier runnable.
328 */
329void
330wakeup(ident)
331	register void *ident;
332{
333
334	sleepq_lock(ident);
335	sleepq_broadcast(ident, SLEEPQ_MSLEEP, -1);
336}
337
338/*
339 * Make a thread sleeping on the specified identifier runnable.
340 * May wake more than one thread if a target thread is currently
341 * swapped out.
342 */
343void
344wakeup_one(ident)
345	register void *ident;
346{
347
348	sleepq_lock(ident);
349	sleepq_signal(ident, SLEEPQ_MSLEEP, -1);
350}
351
352/*
353 * The machine independent parts of context switching.
354 */
355void
356mi_switch(int flags, struct thread *newtd)
357{
358	struct bintime new_switchtime;
359	struct thread *td;
360	struct proc *p;
361
362	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
363	td = curthread;			/* XXX */
364	p = td->td_proc;		/* XXX */
365	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
366#ifdef INVARIANTS
367	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
368		mtx_assert(&Giant, MA_NOTOWNED);
369#endif
370	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
371	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
372	    newtd == NULL) || panicstr,
373	    ("mi_switch: switch in a critical section"));
374	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
375	    ("mi_switch: switch must be voluntary or involuntary"));
376	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
377
378	if (flags & SW_VOL)
379		p->p_stats->p_ru.ru_nvcsw++;
380	else
381		p->p_stats->p_ru.ru_nivcsw++;
382
383	/*
384	 * Compute the amount of time during which the current
385	 * process was running, and add that to its total so far.
386	 */
387	binuptime(&new_switchtime);
388	bintime_add(&p->p_rux.rux_runtime, &new_switchtime);
389	bintime_sub(&p->p_rux.rux_runtime, PCPU_PTR(switchtime));
390
391	td->td_generation++;	/* bump preempt-detect counter */
392
393	/*
394	 * Don't perform context switches from the debugger.
395	 */
396	if (kdb_active) {
397		mtx_unlock_spin(&sched_lock);
398		kdb_backtrace();
399		kdb_reenter();
400		panic("%s: did not reenter debugger", __func__);
401	}
402
403	/*
404	 * Check if the process exceeds its cpu resource allocation.  If
405	 * it reaches the max, arrange to kill the process in ast().
406	 */
407	if (p->p_cpulimit != RLIM_INFINITY &&
408	    p->p_rux.rux_runtime.sec >= p->p_cpulimit) {
409		p->p_sflag |= PS_XCPU;
410		td->td_flags |= TDF_ASTPENDING;
411	}
412
413	/*
414	 * Finish up stats for outgoing thread.
415	 */
416	cnt.v_swtch++;
417	PCPU_SET(switchtime, new_switchtime);
418	PCPU_SET(switchticks, ticks);
419	CTR4(KTR_PROC, "mi_switch: old thread %p (kse %p, pid %ld, %s)",
420	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
421	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
422		newtd = thread_switchout(td, flags, newtd);
423#if (KTR_COMPILE & KTR_SCHED) != 0
424	if (td == PCPU_GET(idlethread))
425		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
426		    td, td->td_proc->p_comm, td->td_priority);
427	else if (newtd != NULL)
428		CTR5(KTR_SCHED,
429		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
430		    td, td->td_proc->p_comm, td->td_priority, newtd,
431		    newtd->td_proc->p_comm);
432	else
433		CTR6(KTR_SCHED,
434		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
435		    td, td->td_proc->p_comm, td->td_priority,
436		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
437#endif
438	sched_switch(td, newtd, flags);
439	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
440	    td, td->td_proc->p_comm, td->td_priority);
441
442	CTR4(KTR_PROC, "mi_switch: new thread %p (kse %p, pid %ld, %s)",
443	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
444
445	/*
446	 * If the last thread was exiting, finish cleaning it up.
447	 */
448	if ((td = PCPU_GET(deadthread))) {
449		PCPU_SET(deadthread, NULL);
450		thread_stash(td);
451	}
452}
453
454/*
455 * Change process state to be runnable,
456 * placing it on the run queue if it is in memory,
457 * and awakening the swapper if it isn't in memory.
458 */
459void
460setrunnable(struct thread *td)
461{
462	struct proc *p;
463
464	p = td->td_proc;
465	mtx_assert(&sched_lock, MA_OWNED);
466	switch (p->p_state) {
467	case PRS_ZOMBIE:
468		panic("setrunnable(1)");
469	default:
470		break;
471	}
472	switch (td->td_state) {
473	case TDS_RUNNING:
474	case TDS_RUNQ:
475		return;
476	case TDS_INHIBITED:
477		/*
478		 * If we are only inhibited because we are swapped out
479		 * then arange to swap in this process. Otherwise just return.
480		 */
481		if (td->td_inhibitors != TDI_SWAPPED)
482			return;
483		/* XXX: intentional fall-through ? */
484	case TDS_CAN_RUN:
485		break;
486	default:
487		printf("state is 0x%x", td->td_state);
488		panic("setrunnable(2)");
489	}
490	if ((p->p_sflag & PS_INMEM) == 0) {
491		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
492			p->p_sflag |= PS_SWAPINREQ;
493			/*
494			 * due to a LOR between sched_lock and
495			 * the sleepqueue chain locks, use
496			 * lower level scheduling functions.
497			 */
498			kick_proc0();
499		}
500	} else
501		sched_wakeup(td);
502}
503
504/*
505 * Compute a tenex style load average of a quantity on
506 * 1, 5 and 15 minute intervals.
507 * XXXKSE   Needs complete rewrite when correct info is available.
508 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
509 */
510static void
511loadav(void *arg)
512{
513	int i, nrun;
514	struct loadavg *avg;
515
516	nrun = sched_load();
517	avg = &averunnable;
518
519	for (i = 0; i < 3; i++)
520		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
521		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
522
523	/*
524	 * Schedule the next update to occur after 5 seconds, but add a
525	 * random variation to avoid synchronisation with processes that
526	 * run at regular intervals.
527	 */
528	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
529	    loadav, NULL);
530}
531
532static void
533lboltcb(void *arg)
534{
535	wakeup(&lbolt);
536	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
537}
538
539/* ARGSUSED */
540static void
541synch_setup(dummy)
542	void *dummy;
543{
544	callout_init(&loadav_callout, CALLOUT_MPSAFE);
545	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
546
547	/* Kick off timeout driven events by calling first time. */
548	loadav(NULL);
549	lboltcb(NULL);
550}
551
552/*
553 * General purpose yield system call
554 */
555int
556yield(struct thread *td, struct yield_args *uap)
557{
558	struct ksegrp *kg;
559
560	kg = td->td_ksegrp;
561	mtx_assert(&Giant, MA_NOTOWNED);
562	mtx_lock_spin(&sched_lock);
563	sched_prio(td, PRI_MAX_TIMESHARE);
564	mi_switch(SW_VOL, NULL);
565	mtx_unlock_spin(&sched_lock);
566	td->td_retval[0] = 0;
567	return (0);
568}
569