kern_synch.c revision 153855
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 153855 2005-12-29 20:57:45Z jhb $");
39
40#include "opt_ktrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66
67static void synch_setup(void *dummy);
68SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69
70int	hogticks;
71int	lbolt;
72
73static struct callout loadav_callout;
74static struct callout lbolt_callout;
75
76struct loadavg averunnable =
77	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
78/*
79 * Constants for averages over 1, 5, and 15 minutes
80 * when sampling at 5 second intervals.
81 */
82static fixpt_t cexp[3] = {
83	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
84	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
85	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
86};
87
88/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
89static int      fscale __unused = FSCALE;
90SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
91
92static void	loadav(void *arg);
93static void	lboltcb(void *arg);
94
95void
96sleepinit(void)
97{
98
99	hogticks = (hz / 10) * 2;	/* Default only. */
100	init_sleepqueues();
101}
102
103/*
104 * General sleep call.  Suspends the current process until a wakeup is
105 * performed on the specified identifier.  The process will then be made
106 * runnable with the specified priority.  Sleeps at most timo/hz seconds
107 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked.  Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
113 *
114 * The mutex argument is exited before the caller is suspended, and
115 * entered before msleep returns.  If priority includes the PDROP
116 * flag the mutex is not entered before returning.
117 */
118int
119msleep(ident, mtx, priority, wmesg, timo)
120	void *ident;
121	struct mtx *mtx;
122	int priority, timo;
123	const char *wmesg;
124{
125	struct thread *td;
126	struct proc *p;
127	int catch, rval, sig, flags;
128	WITNESS_SAVE_DECL(mtx);
129
130	td = curthread;
131	p = td->td_proc;
132#ifdef KTRACE
133	if (KTRPOINT(td, KTR_CSW))
134		ktrcsw(1, 0);
135#endif
136	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
137	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
138	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
139	    ("sleeping without a mutex"));
140	KASSERT(p != NULL, ("msleep1"));
141	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
142
143	if (cold) {
144		/*
145		 * During autoconfiguration, just return;
146		 * don't run any other threads or panic below,
147		 * in case this is the idle thread and already asleep.
148		 * XXX: this used to do "s = splhigh(); splx(safepri);
149		 * splx(s);" to give interrupts a chance, but there is
150		 * no way to give interrupts a chance now.
151		 */
152		if (mtx != NULL && priority & PDROP)
153			mtx_unlock(mtx);
154		return (0);
155	}
156	catch = priority & PCATCH;
157	rval = 0;
158
159	/*
160	 * If we are already on a sleep queue, then remove us from that
161	 * sleep queue first.  We have to do this to handle recursive
162	 * sleeps.
163	 */
164	if (TD_ON_SLEEPQ(td))
165		sleepq_remove(td, td->td_wchan);
166
167	sleepq_lock(ident);
168	if (catch) {
169		/*
170		 * Don't bother sleeping if we are exiting and not the exiting
171		 * thread or if our thread is marked as interrupted.
172		 */
173		mtx_lock_spin(&sched_lock);
174		rval = thread_sleep_check(td);
175		mtx_unlock_spin(&sched_lock);
176		if (rval != 0) {
177			sleepq_release(ident);
178			if (mtx != NULL && priority & PDROP)
179				mtx_unlock(mtx);
180			return (rval);
181		}
182	}
183	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
184	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
185
186	DROP_GIANT();
187	if (mtx != NULL) {
188		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
189		WITNESS_SAVE(&mtx->mtx_object, mtx);
190		mtx_unlock(mtx);
191	}
192
193	/*
194	 * We put ourselves on the sleep queue and start our timeout
195	 * before calling thread_suspend_check, as we could stop there,
196	 * and a wakeup or a SIGCONT (or both) could occur while we were
197	 * stopped without resuming us.  Thus, we must be ready for sleep
198	 * when cursig() is called.  If the wakeup happens while we're
199	 * stopped, then td will no longer be on a sleep queue upon
200	 * return from cursig().
201	 */
202	flags = SLEEPQ_MSLEEP;
203	if (catch)
204		flags |= SLEEPQ_INTERRUPTIBLE;
205	sleepq_add(ident, mtx, wmesg, flags);
206	if (timo)
207		sleepq_set_timeout(ident, timo);
208	if (catch) {
209		sig = sleepq_catch_signals(ident);
210	} else
211		sig = 0;
212
213	/*
214	 * Adjust this thread's priority.
215	 */
216	mtx_lock_spin(&sched_lock);
217	sched_prio(td, priority & PRIMASK);
218	mtx_unlock_spin(&sched_lock);
219
220	if (timo && catch)
221		rval = sleepq_timedwait_sig(ident, sig != 0);
222	else if (timo)
223		rval = sleepq_timedwait(ident);
224	else if (catch)
225		rval = sleepq_wait_sig(ident);
226	else {
227		sleepq_wait(ident);
228		rval = 0;
229	}
230	if (rval == 0 && catch)
231		rval = sleepq_calc_signal_retval(sig);
232#ifdef KTRACE
233	if (KTRPOINT(td, KTR_CSW))
234		ktrcsw(0, 0);
235#endif
236	PICKUP_GIANT();
237	if (mtx != NULL && !(priority & PDROP)) {
238		mtx_lock(mtx);
239		WITNESS_RESTORE(&mtx->mtx_object, mtx);
240	}
241	return (rval);
242}
243
244int
245msleep_spin(ident, mtx, wmesg, timo)
246	void *ident;
247	struct mtx *mtx;
248	const char *wmesg;
249	int timo;
250{
251	struct thread *td;
252	struct proc *p;
253	int rval;
254	WITNESS_SAVE_DECL(mtx);
255
256	td = curthread;
257	p = td->td_proc;
258	KASSERT(mtx != NULL, ("sleeping without a mutex"));
259	KASSERT(p != NULL, ("msleep1"));
260	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
261
262	if (cold) {
263		/*
264		 * During autoconfiguration, just return;
265		 * don't run any other threads or panic below,
266		 * in case this is the idle thread and already asleep.
267		 * XXX: this used to do "s = splhigh(); splx(safepri);
268		 * splx(s);" to give interrupts a chance, but there is
269		 * no way to give interrupts a chance now.
270		 */
271		return (0);
272	}
273
274	sleepq_lock(ident);
275	CTR5(KTR_PROC, "msleep_spin: thread %p (pid %ld, %s) on %s (%p)",
276	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
277
278	DROP_GIANT();
279	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
280	WITNESS_SAVE(&mtx->mtx_object, mtx);
281	mtx_unlock_spin(mtx);
282
283	/*
284	 * We put ourselves on the sleep queue and start our timeout.
285	 */
286	sleepq_add(ident, mtx, wmesg, SLEEPQ_MSLEEP);
287	if (timo)
288		sleepq_set_timeout(ident, timo);
289
290	/*
291	 * Can't call ktrace with any spin locks held so it can lock the
292	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
293	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
294	 * we handle those requests.  This is safe since we have placed our
295	 * thread on the sleep queue already.
296	 */
297#ifdef KTRACE
298	if (KTRPOINT(td, KTR_CSW)) {
299		sleepq_release(ident);
300		ktrcsw(1, 0);
301		sleepq_lock(ident);
302	}
303#endif
304#ifdef WITNESS
305	sleepq_release(ident);
306	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
307	    wmesg);
308	sleepq_lock(ident);
309#endif
310	if (timo)
311		rval = sleepq_timedwait(ident);
312	else {
313		sleepq_wait(ident);
314		rval = 0;
315	}
316#ifdef KTRACE
317	if (KTRPOINT(td, KTR_CSW))
318		ktrcsw(0, 0);
319#endif
320	PICKUP_GIANT();
321	mtx_lock_spin(mtx);
322	WITNESS_RESTORE(&mtx->mtx_object, mtx);
323	return (rval);
324}
325
326int
327msleep_spin(ident, mtx, wmesg, timo)
328	void *ident;
329	struct mtx *mtx;
330	const char *wmesg;
331	int timo;
332{
333	struct thread *td;
334	struct proc *p;
335	int rval;
336	WITNESS_SAVE_DECL(mtx);
337
338	td = curthread;
339	p = td->td_proc;
340	KASSERT(mtx != NULL, ("sleeping without a mutex"));
341	KASSERT(p != NULL, ("msleep1"));
342	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
343
344	if (cold) {
345		/*
346		 * During autoconfiguration, just return;
347		 * don't run any other threads or panic below,
348		 * in case this is the idle thread and already asleep.
349		 * XXX: this used to do "s = splhigh(); splx(safepri);
350		 * splx(s);" to give interrupts a chance, but there is
351		 * no way to give interrupts a chance now.
352		 */
353		return (0);
354	}
355
356	sleepq_lock(ident);
357	CTR5(KTR_PROC, "msleep_spin: thread %p (pid %ld, %s) on %s (%p)",
358	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
359
360	DROP_GIANT();
361	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
362	WITNESS_SAVE(&mtx->mtx_object, mtx);
363	mtx_unlock_spin(mtx);
364
365	/*
366	 * We put ourselves on the sleep queue and start our timeout.
367	 */
368	sleepq_add(ident, mtx, wmesg, SLEEPQ_MSLEEP);
369	if (timo)
370		sleepq_set_timeout(ident, timo);
371
372	/*
373	 * Can't call ktrace with any spin locks held so it can lock the
374	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
375	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
376	 * we handle those requests.  This is safe since we have placed our
377	 * thread on the sleep queue already.
378	 */
379#ifdef KTRACE
380	if (KTRPOINT(td, KTR_CSW)) {
381		sleepq_release(ident);
382		ktrcsw(1, 0);
383		sleepq_lock(ident);
384	}
385#endif
386#ifdef WITNESS
387	sleepq_release(ident);
388	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
389	    wmesg);
390	sleepq_lock(ident);
391#endif
392	if (timo)
393		rval = sleepq_timedwait(ident);
394	else {
395		sleepq_wait(ident);
396		rval = 0;
397	}
398#ifdef KTRACE
399	if (KTRPOINT(td, KTR_CSW))
400		ktrcsw(0, 0);
401#endif
402	PICKUP_GIANT();
403	mtx_lock_spin(mtx);
404	WITNESS_RESTORE(&mtx->mtx_object, mtx);
405	return (rval);
406}
407
408/*
409 * Make all threads sleeping on the specified identifier runnable.
410 */
411void
412wakeup(ident)
413	register void *ident;
414{
415
416	sleepq_lock(ident);
417	sleepq_broadcast(ident, SLEEPQ_MSLEEP, -1);
418}
419
420/*
421 * Make a thread sleeping on the specified identifier runnable.
422 * May wake more than one thread if a target thread is currently
423 * swapped out.
424 */
425void
426wakeup_one(ident)
427	register void *ident;
428{
429
430	sleepq_lock(ident);
431	sleepq_signal(ident, SLEEPQ_MSLEEP, -1);
432}
433
434/*
435 * The machine independent parts of context switching.
436 */
437void
438mi_switch(int flags, struct thread *newtd)
439{
440	struct bintime new_switchtime;
441	struct thread *td;
442	struct proc *p;
443
444	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
445	td = curthread;			/* XXX */
446	p = td->td_proc;		/* XXX */
447	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
448#ifdef INVARIANTS
449	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
450		mtx_assert(&Giant, MA_NOTOWNED);
451#endif
452	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
453	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
454	    newtd == NULL) || panicstr,
455	    ("mi_switch: switch in a critical section"));
456	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
457	    ("mi_switch: switch must be voluntary or involuntary"));
458	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
459
460	if (flags & SW_VOL)
461		p->p_stats->p_ru.ru_nvcsw++;
462	else
463		p->p_stats->p_ru.ru_nivcsw++;
464
465	/*
466	 * Compute the amount of time during which the current
467	 * process was running, and add that to its total so far.
468	 */
469	binuptime(&new_switchtime);
470	bintime_add(&p->p_rux.rux_runtime, &new_switchtime);
471	bintime_sub(&p->p_rux.rux_runtime, PCPU_PTR(switchtime));
472
473	td->td_generation++;	/* bump preempt-detect counter */
474
475	/*
476	 * Don't perform context switches from the debugger.
477	 */
478	if (kdb_active) {
479		mtx_unlock_spin(&sched_lock);
480		kdb_backtrace();
481		kdb_reenter();
482		panic("%s: did not reenter debugger", __func__);
483	}
484
485	/*
486	 * Check if the process exceeds its cpu resource allocation.  If
487	 * it reaches the max, arrange to kill the process in ast().
488	 */
489	if (p->p_cpulimit != RLIM_INFINITY &&
490	    p->p_rux.rux_runtime.sec >= p->p_cpulimit) {
491		p->p_sflag |= PS_XCPU;
492		td->td_flags |= TDF_ASTPENDING;
493	}
494
495	/*
496	 * Finish up stats for outgoing thread.
497	 */
498	cnt.v_swtch++;
499	PCPU_SET(switchtime, new_switchtime);
500	PCPU_SET(switchticks, ticks);
501	CTR4(KTR_PROC, "mi_switch: old thread %p (kse %p, pid %ld, %s)",
502	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
503	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
504		newtd = thread_switchout(td, flags, newtd);
505#if (KTR_COMPILE & KTR_SCHED) != 0
506	if (td == PCPU_GET(idlethread))
507		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
508		    td, td->td_proc->p_comm, td->td_priority);
509	else if (newtd != NULL)
510		CTR5(KTR_SCHED,
511		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
512		    td, td->td_proc->p_comm, td->td_priority, newtd,
513		    newtd->td_proc->p_comm);
514	else
515		CTR6(KTR_SCHED,
516		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
517		    td, td->td_proc->p_comm, td->td_priority,
518		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
519#endif
520	sched_switch(td, newtd, flags);
521	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
522	    td, td->td_proc->p_comm, td->td_priority);
523
524	CTR4(KTR_PROC, "mi_switch: new thread %p (kse %p, pid %ld, %s)",
525	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
526
527	/*
528	 * If the last thread was exiting, finish cleaning it up.
529	 */
530	if ((td = PCPU_GET(deadthread))) {
531		PCPU_SET(deadthread, NULL);
532		thread_stash(td);
533	}
534}
535
536/*
537 * Change process state to be runnable,
538 * placing it on the run queue if it is in memory,
539 * and awakening the swapper if it isn't in memory.
540 */
541void
542setrunnable(struct thread *td)
543{
544	struct proc *p;
545
546	p = td->td_proc;
547	mtx_assert(&sched_lock, MA_OWNED);
548	switch (p->p_state) {
549	case PRS_ZOMBIE:
550		panic("setrunnable(1)");
551	default:
552		break;
553	}
554	switch (td->td_state) {
555	case TDS_RUNNING:
556	case TDS_RUNQ:
557		return;
558	case TDS_INHIBITED:
559		/*
560		 * If we are only inhibited because we are swapped out
561		 * then arange to swap in this process. Otherwise just return.
562		 */
563		if (td->td_inhibitors != TDI_SWAPPED)
564			return;
565		/* XXX: intentional fall-through ? */
566	case TDS_CAN_RUN:
567		break;
568	default:
569		printf("state is 0x%x", td->td_state);
570		panic("setrunnable(2)");
571	}
572	if ((p->p_sflag & PS_INMEM) == 0) {
573		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
574			p->p_sflag |= PS_SWAPINREQ;
575			/*
576			 * due to a LOR between sched_lock and
577			 * the sleepqueue chain locks, use
578			 * lower level scheduling functions.
579			 */
580			kick_proc0();
581		}
582	} else
583		sched_wakeup(td);
584}
585
586/*
587 * Compute a tenex style load average of a quantity on
588 * 1, 5 and 15 minute intervals.
589 * XXXKSE   Needs complete rewrite when correct info is available.
590 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
591 */
592static void
593loadav(void *arg)
594{
595	int i, nrun;
596	struct loadavg *avg;
597
598	nrun = sched_load();
599	avg = &averunnable;
600
601	for (i = 0; i < 3; i++)
602		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
603		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
604
605	/*
606	 * Schedule the next update to occur after 5 seconds, but add a
607	 * random variation to avoid synchronisation with processes that
608	 * run at regular intervals.
609	 */
610	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
611	    loadav, NULL);
612}
613
614static void
615lboltcb(void *arg)
616{
617	wakeup(&lbolt);
618	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
619}
620
621/* ARGSUSED */
622static void
623synch_setup(dummy)
624	void *dummy;
625{
626	callout_init(&loadav_callout, CALLOUT_MPSAFE);
627	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
628
629	/* Kick off timeout driven events by calling first time. */
630	loadav(NULL);
631	lboltcb(NULL);
632}
633
634/*
635 * General purpose yield system call
636 */
637int
638yield(struct thread *td, struct yield_args *uap)
639{
640	struct ksegrp *kg;
641
642	kg = td->td_ksegrp;
643	mtx_assert(&Giant, MA_NOTOWNED);
644	mtx_lock_spin(&sched_lock);
645	sched_prio(td, PRI_MAX_TIMESHARE);
646	mi_switch(SW_VOL, NULL);
647	mtx_unlock_spin(&sched_lock);
648	td->td_retval[0] = 0;
649	return (0);
650}
651