kern_synch.c revision 13788
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.17 1996/01/03 21:42:12 wollman Exp $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/kernel.h>
48#include <sys/buf.h>
49#include <sys/signalvar.h>
50#include <sys/resourcevar.h>
51#include <sys/signalvar.h>
52#include <sys/vmmeter.h>
53#include <vm/vm.h>
54#include <vm/vm_param.h>
55#include <vm/vm_extern.h>
56#ifdef KTRACE
57#include <sys/ktrace.h>
58#endif
59
60#include <machine/cpu.h>
61
62static void rqinit __P((void *));
63SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
64
65u_char	curpriority;		/* usrpri of curproc */
66int	lbolt;			/* once a second sleep address */
67
68extern void	endtsleep __P((void *));
69extern void	updatepri __P((struct proc *p));
70
71/*
72 * Force switch among equal priority processes every 100ms.
73 */
74/* ARGSUSED */
75void
76roundrobin(arg)
77	void *arg;
78{
79
80	need_resched();
81	timeout(roundrobin, NULL, hz / 10);
82}
83
84/*
85 * Constants for digital decay and forget:
86 *	90% of (p_estcpu) usage in 5 * loadav time
87 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
88 *          Note that, as ps(1) mentions, this can let percentages
89 *          total over 100% (I've seen 137.9% for 3 processes).
90 *
91 * Note that hardclock updates p_estcpu and p_cpticks independently.
92 *
93 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
94 * That is, the system wants to compute a value of decay such
95 * that the following for loop:
96 * 	for (i = 0; i < (5 * loadavg); i++)
97 * 		p_estcpu *= decay;
98 * will compute
99 * 	p_estcpu *= 0.1;
100 * for all values of loadavg:
101 *
102 * Mathematically this loop can be expressed by saying:
103 * 	decay ** (5 * loadavg) ~= .1
104 *
105 * The system computes decay as:
106 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
107 *
108 * We wish to prove that the system's computation of decay
109 * will always fulfill the equation:
110 * 	decay ** (5 * loadavg) ~= .1
111 *
112 * If we compute b as:
113 * 	b = 2 * loadavg
114 * then
115 * 	decay = b / (b + 1)
116 *
117 * We now need to prove two things:
118 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
119 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
120 *
121 * Facts:
122 *         For x close to zero, exp(x) =~ 1 + x, since
123 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
124 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
125 *         For x close to zero, ln(1+x) =~ x, since
126 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
127 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
128 *         ln(.1) =~ -2.30
129 *
130 * Proof of (1):
131 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
132 *	solving for factor,
133 *      ln(factor) =~ (-2.30/5*loadav), or
134 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
135 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
136 *
137 * Proof of (2):
138 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
139 *	solving for power,
140 *      power*ln(b/(b+1)) =~ -2.30, or
141 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
142 *
143 * Actual power values for the implemented algorithm are as follows:
144 *      loadav: 1       2       3       4
145 *      power:  5.68    10.32   14.94   19.55
146 */
147
148/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
149#define	loadfactor(loadav)	(2 * (loadav))
150#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
151
152/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
153fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
154
155/*
156 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
157 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
158 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
159 *
160 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
161 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
162 *
163 * If you dont want to bother with the faster/more-accurate formula, you
164 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
165 * (more general) method of calculating the %age of CPU used by a process.
166 */
167#define	CCPU_SHIFT	11
168
169/*
170 * Recompute process priorities, every hz ticks.
171 */
172/* ARGSUSED */
173void
174schedcpu(arg)
175	void *arg;
176{
177	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
178	register struct proc *p;
179	register int s;
180	register unsigned int newcpu;
181
182	wakeup((caddr_t)&lbolt);
183	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
184		/*
185		 * Increment time in/out of memory and sleep time
186		 * (if sleeping).  We ignore overflow; with 16-bit int's
187		 * (remember them?) overflow takes 45 days.
188		 */
189		p->p_swtime++;
190		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
191			p->p_slptime++;
192		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
193		/*
194		 * If the process has slept the entire second,
195		 * stop recalculating its priority until it wakes up.
196		 */
197		if (p->p_slptime > 1)
198			continue;
199		s = splstatclock();	/* prevent state changes */
200		/*
201		 * p_pctcpu is only for ps.
202		 */
203#if	(FSHIFT >= CCPU_SHIFT)
204		p->p_pctcpu += (hz == 100)?
205			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
206                	100 * (((fixpt_t) p->p_cpticks)
207				<< (FSHIFT - CCPU_SHIFT)) / hz;
208#else
209		p->p_pctcpu += ((FSCALE - ccpu) *
210			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
211#endif
212		p->p_cpticks = 0;
213		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
214		p->p_estcpu = min(newcpu, UCHAR_MAX);
215		resetpriority(p);
216		if (p->p_priority >= PUSER) {
217#define	PPQ	(128 / NQS)		/* priorities per queue */
218			if ((p != curproc) &&
219			    p->p_stat == SRUN &&
220			    (p->p_flag & P_INMEM) &&
221			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
222				remrq(p);
223				p->p_priority = p->p_usrpri;
224				setrunqueue(p);
225			} else
226				p->p_priority = p->p_usrpri;
227		}
228		splx(s);
229	}
230	vmmeter();
231	timeout(schedcpu, (void *)0, hz);
232}
233
234/*
235 * Recalculate the priority of a process after it has slept for a while.
236 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
237 * least six times the loadfactor will decay p_estcpu to zero.
238 */
239void
240updatepri(p)
241	register struct proc *p;
242{
243	register unsigned int newcpu = p->p_estcpu;
244	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245
246	if (p->p_slptime > 5 * loadfac)
247		p->p_estcpu = 0;
248	else {
249		p->p_slptime--;	/* the first time was done in schedcpu */
250		while (newcpu && --p->p_slptime)
251			newcpu = (int) decay_cpu(loadfac, newcpu);
252		p->p_estcpu = min(newcpu, UCHAR_MAX);
253	}
254	resetpriority(p);
255}
256
257/*
258 * We're only looking at 7 bits of the address; everything is
259 * aligned to 4, lots of things are aligned to greater powers
260 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
261 */
262#define TABLESIZE	128
263#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
264struct slpque {
265	struct proc *sq_head;
266	struct proc **sq_tailp;
267} slpque[TABLESIZE];
268
269/*
270 * During autoconfiguration or after a panic, a sleep will simply
271 * lower the priority briefly to allow interrupts, then return.
272 * The priority to be used (safepri) is machine-dependent, thus this
273 * value is initialized and maintained in the machine-dependent layers.
274 * This priority will typically be 0, or the lowest priority
275 * that is safe for use on the interrupt stack; it can be made
276 * higher to block network software interrupts after panics.
277 */
278int safepri;
279
280/*
281 * General sleep call.  Suspends the current process until a wakeup is
282 * performed on the specified identifier.  The process will then be made
283 * runnable with the specified priority.  Sleeps at most timo/hz seconds
284 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
285 * before and after sleeping, else signals are not checked.  Returns 0 if
286 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
287 * signal needs to be delivered, ERESTART is returned if the current system
288 * call should be restarted if possible, and EINTR is returned if the system
289 * call should be interrupted by the signal (return EINTR).
290 */
291int
292tsleep(ident, priority, wmesg, timo)
293	void *ident;
294	int priority, timo;
295	char *wmesg;
296{
297	register struct proc *p = curproc;
298	register struct slpque *qp;
299	register s;
300	int sig, catch = priority & PCATCH;
301
302#ifdef KTRACE
303	if (KTRPOINT(p, KTR_CSW))
304		ktrcsw(p->p_tracep, 1, 0);
305#endif
306	s = splhigh();
307	if (cold || panicstr) {
308		/*
309		 * After a panic, or during autoconfiguration,
310		 * just give interrupts a chance, then just return;
311		 * don't run any other procs or panic below,
312		 * in case this is the idle process and already asleep.
313		 */
314		splx(safepri);
315		splx(s);
316		return (0);
317	}
318#ifdef DIAGNOSTIC
319	if (ident == NULL || p->p_stat != SRUN || p->p_back)
320		panic("tsleep");
321#endif
322	p->p_wchan = ident;
323	p->p_wmesg = wmesg;
324	p->p_slptime = 0;
325	p->p_priority = priority & PRIMASK;
326	qp = &slpque[LOOKUP(ident)];
327	if (qp->sq_head == 0)
328		qp->sq_head = p;
329	else
330		*qp->sq_tailp = p;
331	*(qp->sq_tailp = &p->p_forw) = 0;
332	if (timo)
333		timeout(endtsleep, (void *)p, timo);
334	/*
335	 * We put ourselves on the sleep queue and start our timeout
336	 * before calling CURSIG, as we could stop there, and a wakeup
337	 * or a SIGCONT (or both) could occur while we were stopped.
338	 * A SIGCONT would cause us to be marked as SSLEEP
339	 * without resuming us, thus we must be ready for sleep
340	 * when CURSIG is called.  If the wakeup happens while we're
341	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
342	 */
343	if (catch) {
344		p->p_flag |= P_SINTR;
345		if ((sig = CURSIG(p))) {
346			if (p->p_wchan)
347				unsleep(p);
348			p->p_stat = SRUN;
349			goto resume;
350		}
351		if (p->p_wchan == 0) {
352			catch = 0;
353			goto resume;
354		}
355	} else
356		sig = 0;
357	p->p_stat = SSLEEP;
358	p->p_stats->p_ru.ru_nvcsw++;
359	mi_switch();
360resume:
361	curpriority = p->p_usrpri;
362	splx(s);
363	p->p_flag &= ~P_SINTR;
364	if (p->p_flag & P_TIMEOUT) {
365		p->p_flag &= ~P_TIMEOUT;
366		if (sig == 0) {
367#ifdef KTRACE
368			if (KTRPOINT(p, KTR_CSW))
369				ktrcsw(p->p_tracep, 0, 0);
370#endif
371			return (EWOULDBLOCK);
372		}
373	} else if (timo)
374		untimeout(endtsleep, (void *)p);
375	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
376#ifdef KTRACE
377		if (KTRPOINT(p, KTR_CSW))
378			ktrcsw(p->p_tracep, 0, 0);
379#endif
380		if (p->p_sigacts->ps_sigintr & sigmask(sig))
381			return (EINTR);
382		return (ERESTART);
383	}
384#ifdef KTRACE
385	if (KTRPOINT(p, KTR_CSW))
386		ktrcsw(p->p_tracep, 0, 0);
387#endif
388	return (0);
389}
390
391/*
392 * Implement timeout for tsleep.
393 * If process hasn't been awakened (wchan non-zero),
394 * set timeout flag and undo the sleep.  If proc
395 * is stopped, just unsleep so it will remain stopped.
396 */
397void
398endtsleep(arg)
399	void *arg;
400{
401	register struct proc *p;
402	int s;
403
404	p = (struct proc *)arg;
405	s = splhigh();
406	if (p->p_wchan) {
407		if (p->p_stat == SSLEEP)
408			setrunnable(p);
409		else
410			unsleep(p);
411		p->p_flag |= P_TIMEOUT;
412	}
413	splx(s);
414}
415
416/*
417 * Short-term, non-interruptable sleep.
418 */
419void
420sleep(ident, priority)
421	void *ident;
422	int priority;
423{
424	register struct proc *p = curproc;
425	register struct slpque *qp;
426	register s;
427
428#ifdef DIAGNOSTIC
429	if (priority > PZERO) {
430		printf("sleep called with priority %d > PZERO, wchan: %p\n",
431		    priority, ident);
432		panic("old sleep");
433	}
434#endif
435	s = splhigh();
436	if (cold || panicstr) {
437		/*
438		 * After a panic, or during autoconfiguration,
439		 * just give interrupts a chance, then just return;
440		 * don't run any other procs or panic below,
441		 * in case this is the idle process and already asleep.
442		 */
443		splx(safepri);
444		splx(s);
445		return;
446	}
447#ifdef DIAGNOSTIC
448	if (ident == NULL || p->p_stat != SRUN || p->p_back)
449		panic("sleep");
450#endif
451	p->p_wchan = ident;
452	p->p_wmesg = NULL;
453	p->p_slptime = 0;
454	p->p_priority = priority;
455	qp = &slpque[LOOKUP(ident)];
456	if (qp->sq_head == 0)
457		qp->sq_head = p;
458	else
459		*qp->sq_tailp = p;
460	*(qp->sq_tailp = &p->p_forw) = 0;
461	p->p_stat = SSLEEP;
462	p->p_stats->p_ru.ru_nvcsw++;
463#ifdef KTRACE
464	if (KTRPOINT(p, KTR_CSW))
465		ktrcsw(p->p_tracep, 1, 0);
466#endif
467	mi_switch();
468#ifdef KTRACE
469	if (KTRPOINT(p, KTR_CSW))
470		ktrcsw(p->p_tracep, 0, 0);
471#endif
472	curpriority = p->p_usrpri;
473	splx(s);
474}
475
476/*
477 * Remove a process from its wait queue
478 */
479void
480unsleep(p)
481	register struct proc *p;
482{
483	register struct slpque *qp;
484	register struct proc **hp;
485	int s;
486
487	s = splhigh();
488	if (p->p_wchan) {
489		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
490		while (*hp != p)
491			hp = &(*hp)->p_forw;
492		*hp = p->p_forw;
493		if (qp->sq_tailp == &p->p_forw)
494			qp->sq_tailp = hp;
495		p->p_wchan = 0;
496	}
497	splx(s);
498}
499
500/*
501 * Make all processes sleeping on the specified identifier runnable.
502 */
503void
504wakeup(ident)
505	register void *ident;
506{
507	register struct slpque *qp;
508	register struct proc *p, **q;
509	int s;
510
511	s = splhigh();
512	qp = &slpque[LOOKUP(ident)];
513restart:
514	for (q = &qp->sq_head; *q; ) {
515		p = *q;
516#ifdef DIAGNOSTIC
517		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
518			panic("wakeup");
519#endif
520		if (p->p_wchan == ident) {
521			p->p_wchan = 0;
522			*q = p->p_forw;
523			if (qp->sq_tailp == &p->p_forw)
524				qp->sq_tailp = q;
525			if (p->p_stat == SSLEEP) {
526				/* OPTIMIZED EXPANSION OF setrunnable(p); */
527				if (p->p_slptime > 1)
528					updatepri(p);
529				p->p_slptime = 0;
530				p->p_stat = SRUN;
531				if (p->p_flag & P_INMEM)
532					setrunqueue(p);
533				/*
534				 * Since curpriority is a user priority,
535				 * p->p_priority is always better than
536				 * curpriority.
537				 */
538				if ((p->p_flag & P_INMEM) == 0)
539					wakeup((caddr_t)&proc0);
540				else
541					need_resched();
542				/* END INLINE EXPANSION */
543				goto restart;
544			}
545		} else
546			q = &p->p_forw;
547	}
548	splx(s);
549}
550
551/*
552 * The machine independent parts of mi_switch().
553 * Must be called at splstatclock() or higher.
554 */
555void
556mi_switch()
557{
558	register struct proc *p = curproc;	/* XXX */
559	register struct rlimit *rlim;
560	register long s, u;
561	struct timeval tv;
562
563	/*
564	 * Compute the amount of time during which the current
565	 * process was running, and add that to its total so far.
566	 */
567	microtime(&tv);
568	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
569	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
570	if (u < 0) {
571		u += 1000000;
572		s--;
573	} else if (u >= 1000000) {
574		u -= 1000000;
575		s++;
576	}
577	p->p_rtime.tv_usec = u;
578	p->p_rtime.tv_sec = s;
579
580	/*
581	 * Check if the process exceeds its cpu resource allocation.
582	 * If over max, kill it.  In any case, if it has run for more
583	 * than 10 minutes, reduce priority to give others a chance.
584	 */
585	if (p->p_stat != SZOMB) {
586		rlim = &p->p_rlimit[RLIMIT_CPU];
587		if (s >= rlim->rlim_cur) {
588			if (s >= rlim->rlim_max)
589				killproc(p, "exceeded maximum CPU limit");
590			else {
591				psignal(p, SIGXCPU);
592				if (rlim->rlim_cur < rlim->rlim_max)
593					rlim->rlim_cur += 5;
594			}
595		}
596		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
597			p->p_nice = NZERO + 4;
598			resetpriority(p);
599		}
600	}
601
602	/*
603	 * Pick a new current process and record its start time.
604	 */
605	cnt.v_swtch++;
606	cpu_switch(p);
607	microtime(&runtime);
608}
609
610/*
611 * Initialize the (doubly-linked) run queues
612 * to be empty.
613 */
614/* ARGSUSED*/
615static void
616rqinit(dummy)
617	void *dummy;
618{
619	register int i;
620
621	for (i = 0; i < NQS; i++) {
622		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
623		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
624		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
625	}
626}
627
628/*
629 * Change process state to be runnable,
630 * placing it on the run queue if it is in memory,
631 * and awakening the swapper if it isn't in memory.
632 */
633void
634setrunnable(p)
635	register struct proc *p;
636{
637	register int s;
638
639	s = splhigh();
640	switch (p->p_stat) {
641	case 0:
642	case SRUN:
643	case SZOMB:
644	default:
645		panic("setrunnable");
646	case SSTOP:
647	case SSLEEP:
648		unsleep(p);		/* e.g. when sending signals */
649		break;
650
651	case SIDL:
652		break;
653	}
654	p->p_stat = SRUN;
655	if (p->p_flag & P_INMEM)
656		setrunqueue(p);
657	splx(s);
658	if (p->p_slptime > 1)
659		updatepri(p);
660	p->p_slptime = 0;
661	if ((p->p_flag & P_INMEM) == 0)
662		wakeup((caddr_t)&proc0);
663	else if (p->p_priority < curpriority)
664		need_resched();
665}
666
667/*
668 * Compute the priority of a process when running in user mode.
669 * Arrange to reschedule if the resulting priority is better
670 * than that of the current process.
671 */
672void
673resetpriority(p)
674	register struct proc *p;
675{
676	register unsigned int newpriority;
677
678	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
679		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
680		newpriority = min(newpriority, MAXPRI);
681		p->p_usrpri = newpriority;
682		if (newpriority < curpriority)
683			need_resched();
684	} else {
685		need_resched();
686	}
687}
688