kern_synch.c revision 130182
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 130182 2004-06-07 09:35:00Z tjr $");
39
40#include "opt_ddb.h"
41#include "opt_ktrace.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void synch_setup(void *dummy);
71SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75
76static struct callout loadav_callout;
77static struct callout lbolt_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
92static int      fscale __unused = FSCALE;
93SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
94
95static void	loadav(void *arg);
96static void	lboltcb(void *arg);
97
98void
99sleepinit(void)
100{
101
102	hogticks = (hz / 10) * 2;	/* Default only. */
103	init_sleepqueues();
104}
105
106/*
107 * General sleep call.  Suspends the current process until a wakeup is
108 * performed on the specified identifier.  The process will then be made
109 * runnable with the specified priority.  Sleeps at most timo/hz seconds
110 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
111 * before and after sleeping, else signals are not checked.  Returns 0 if
112 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
113 * signal needs to be delivered, ERESTART is returned if the current system
114 * call should be restarted if possible, and EINTR is returned if the system
115 * call should be interrupted by the signal (return EINTR).
116 *
117 * The mutex argument is exited before the caller is suspended, and
118 * entered before msleep returns.  If priority includes the PDROP
119 * flag the mutex is not entered before returning.
120 */
121int
122msleep(ident, mtx, priority, wmesg, timo)
123	void *ident;
124	struct mtx *mtx;
125	int priority, timo;
126	const char *wmesg;
127{
128	struct sleepqueue *sq;
129	struct thread *td;
130	struct proc *p;
131	int catch, rval, sig;
132	WITNESS_SAVE_DECL(mtx);
133
134	td = curthread;
135	p = td->td_proc;
136#ifdef KTRACE
137	if (KTRPOINT(td, KTR_CSW))
138		ktrcsw(1, 0);
139#endif
140	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
141	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
142	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
143	    ("sleeping without a mutex"));
144	KASSERT(p != NULL, ("msleep1"));
145	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
146
147	if (cold) {
148		/*
149		 * During autoconfiguration, just return;
150		 * don't run any other threads or panic below,
151		 * in case this is the idle thread and already asleep.
152		 * XXX: this used to do "s = splhigh(); splx(safepri);
153		 * splx(s);" to give interrupts a chance, but there is
154		 * no way to give interrupts a chance now.
155		 */
156		if (mtx != NULL && priority & PDROP)
157			mtx_unlock(mtx);
158		return (0);
159	}
160	catch = priority & PCATCH;
161	rval = 0;
162
163	/*
164	 * If we are already on a sleep queue, then remove us from that
165	 * sleep queue first.  We have to do this to handle recursive
166	 * sleeps.
167	 */
168	if (TD_ON_SLEEPQ(td))
169		sleepq_remove(td, td->td_wchan);
170
171	sq = sleepq_lookup(ident);
172	mtx_lock_spin(&sched_lock);
173
174	if (p->p_flag & P_SA || p->p_numthreads > 1) {
175		/*
176		 * Just don't bother if we are exiting
177		 * and not the exiting thread or thread was marked as
178		 * interrupted.
179		 */
180		if (catch) {
181			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
182				mtx_unlock_spin(&sched_lock);
183				sleepq_release(ident);
184				return (EINTR);
185			}
186			if (td->td_flags & TDF_INTERRUPT) {
187				mtx_unlock_spin(&sched_lock);
188				sleepq_release(ident);
189				return (td->td_intrval);
190			}
191		}
192	}
193	mtx_unlock_spin(&sched_lock);
194	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
195	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
196
197	DROP_GIANT();
198	if (mtx != NULL) {
199		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
200		WITNESS_SAVE(&mtx->mtx_object, mtx);
201		mtx_unlock(mtx);
202	}
203
204	/*
205	 * We put ourselves on the sleep queue and start our timeout
206	 * before calling thread_suspend_check, as we could stop there,
207	 * and a wakeup or a SIGCONT (or both) could occur while we were
208	 * stopped without resuming us.  Thus, we must be ready for sleep
209	 * when cursig() is called.  If the wakeup happens while we're
210	 * stopped, then td will no longer be on a sleep queue upon
211	 * return from cursig().
212	 */
213	sleepq_add(sq, ident, mtx, wmesg, 0);
214	if (timo)
215		sleepq_set_timeout(ident, timo);
216	if (catch) {
217		sig = sleepq_catch_signals(ident);
218		if (sig == 0 && !TD_ON_SLEEPQ(td)) {
219			mtx_lock_spin(&sched_lock);
220			td->td_flags &= ~TDF_SINTR;
221			mtx_unlock_spin(&sched_lock);
222			catch = 0;
223		}
224	} else
225		sig = 0;
226
227	/*
228	 * Adjust this thread's priority.
229	 *
230	 * XXX: do we need to save priority in td_base_pri?
231	 */
232	mtx_lock_spin(&sched_lock);
233	sched_prio(td, priority & PRIMASK);
234	mtx_unlock_spin(&sched_lock);
235
236	if (timo && catch)
237		rval = sleepq_timedwait_sig(ident, sig != 0);
238	else if (timo)
239		rval = sleepq_timedwait(ident, sig != 0);
240	else if (catch)
241		rval = sleepq_wait_sig(ident);
242	else {
243		sleepq_wait(ident);
244		rval = 0;
245	}
246	if (rval == 0 && catch)
247		rval = sleepq_calc_signal_retval(sig);
248#ifdef KTRACE
249	if (KTRPOINT(td, KTR_CSW))
250		ktrcsw(0, 0);
251#endif
252	PICKUP_GIANT();
253	if (mtx != NULL && !(priority & PDROP)) {
254		mtx_lock(mtx);
255		WITNESS_RESTORE(&mtx->mtx_object, mtx);
256	}
257	return (rval);
258}
259
260/*
261 * Make all threads sleeping on the specified identifier runnable.
262 */
263void
264wakeup(ident)
265	register void *ident;
266{
267
268	sleepq_broadcast(ident, 0, -1);
269}
270
271/*
272 * Make a thread sleeping on the specified identifier runnable.
273 * May wake more than one thread if a target thread is currently
274 * swapped out.
275 */
276void
277wakeup_one(ident)
278	register void *ident;
279{
280
281	sleepq_signal(ident, 0, -1);
282}
283
284/*
285 * The machine independent parts of context switching.
286 */
287void
288mi_switch(int flags)
289{
290	struct bintime new_switchtime;
291	struct thread *td;
292	struct proc *p;
293
294	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
295	td = curthread;			/* XXX */
296	p = td->td_proc;		/* XXX */
297	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
298#ifdef INVARIANTS
299	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
300		mtx_assert(&Giant, MA_NOTOWNED);
301#endif
302	KASSERT(td->td_critnest == 1,
303	    ("mi_switch: switch in a critical section"));
304	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
305	    ("mi_switch: switch must be voluntary or involuntary"));
306
307	if (flags & SW_VOL)
308		p->p_stats->p_ru.ru_nvcsw++;
309	else
310		p->p_stats->p_ru.ru_nivcsw++;
311	/*
312	 * Compute the amount of time during which the current
313	 * process was running, and add that to its total so far.
314	 */
315	binuptime(&new_switchtime);
316	bintime_add(&p->p_runtime, &new_switchtime);
317	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
318
319	td->td_generation++;	/* bump preempt-detect counter */
320
321#ifdef DDB
322	/*
323	 * Don't perform context switches from the debugger.
324	 */
325	if (db_active) {
326		mtx_unlock_spin(&sched_lock);
327		db_print_backtrace();
328		db_error("Context switches not allowed in the debugger");
329	}
330#endif
331
332	/*
333	 * Check if the process exceeds its cpu resource allocation.  If
334	 * over max, arrange to kill the process in ast().
335	 */
336	if (p->p_cpulimit != RLIM_INFINITY &&
337	    p->p_runtime.sec > p->p_cpulimit) {
338		p->p_sflag |= PS_XCPU;
339		td->td_flags |= TDF_ASTPENDING;
340	}
341
342	/*
343	 * Finish up stats for outgoing thread.
344	 */
345	cnt.v_swtch++;
346	PCPU_SET(switchtime, new_switchtime);
347	PCPU_SET(switchticks, ticks);
348	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %ld, %s)",
349	    (void *)td, (long)p->p_pid, p->p_comm);
350	if (td->td_proc->p_flag & P_SA)
351		thread_switchout(td);
352	sched_switch(td);
353
354	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %ld, %s)",
355	    (void *)td, (long)p->p_pid, p->p_comm);
356
357	/*
358	 * If the last thread was exiting, finish cleaning it up.
359	 */
360	if ((td = PCPU_GET(deadthread))) {
361		PCPU_SET(deadthread, NULL);
362		thread_stash(td);
363	}
364}
365
366/*
367 * Change process state to be runnable,
368 * placing it on the run queue if it is in memory,
369 * and awakening the swapper if it isn't in memory.
370 */
371void
372setrunnable(struct thread *td)
373{
374	struct proc *p;
375
376	p = td->td_proc;
377	mtx_assert(&sched_lock, MA_OWNED);
378	switch (p->p_state) {
379	case PRS_ZOMBIE:
380		panic("setrunnable(1)");
381	default:
382		break;
383	}
384	switch (td->td_state) {
385	case TDS_RUNNING:
386	case TDS_RUNQ:
387		return;
388	case TDS_INHIBITED:
389		/*
390		 * If we are only inhibited because we are swapped out
391		 * then arange to swap in this process. Otherwise just return.
392		 */
393		if (td->td_inhibitors != TDI_SWAPPED)
394			return;
395		/* XXX: intentional fall-through ? */
396	case TDS_CAN_RUN:
397		break;
398	default:
399		printf("state is 0x%x", td->td_state);
400		panic("setrunnable(2)");
401	}
402	if ((p->p_sflag & PS_INMEM) == 0) {
403		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
404			p->p_sflag |= PS_SWAPINREQ;
405			wakeup(&proc0);
406		}
407	} else
408		sched_wakeup(td);
409}
410
411/*
412 * Compute a tenex style load average of a quantity on
413 * 1, 5 and 15 minute intervals.
414 * XXXKSE   Needs complete rewrite when correct info is available.
415 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
416 */
417static void
418loadav(void *arg)
419{
420	int i, nrun;
421	struct loadavg *avg;
422
423	nrun = sched_load();
424	avg = &averunnable;
425
426	for (i = 0; i < 3; i++)
427		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
428		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
429
430	/*
431	 * Schedule the next update to occur after 5 seconds, but add a
432	 * random variation to avoid synchronisation with processes that
433	 * run at regular intervals.
434	 */
435	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
436	    loadav, NULL);
437}
438
439static void
440lboltcb(void *arg)
441{
442	wakeup(&lbolt);
443	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
444}
445
446/* ARGSUSED */
447static void
448synch_setup(dummy)
449	void *dummy;
450{
451	callout_init(&loadav_callout, CALLOUT_MPSAFE);
452	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
453
454	/* Kick off timeout driven events by calling first time. */
455	loadav(NULL);
456	lboltcb(NULL);
457}
458
459/*
460 * General purpose yield system call
461 */
462int
463yield(struct thread *td, struct yield_args *uap)
464{
465	struct ksegrp *kg;
466
467	kg = td->td_ksegrp;
468	mtx_assert(&Giant, MA_NOTOWNED);
469	mtx_lock_spin(&sched_lock);
470	sched_prio(td, PRI_MAX_TIMESHARE);
471	mi_switch(SW_VOL);
472	mtx_unlock_spin(&sched_lock);
473	td->td_retval[0] = 0;
474	return (0);
475}
476