kern_synch.c revision 127911
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 127911 2004-04-05 21:03:37Z imp $");
39
40#include "opt_ddb.h"
41#include "opt_ktrace.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/signalvar.h>
54#include <sys/sleepqueue.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void synch_setup(void *dummy);
71SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75
76static struct callout loadav_callout;
77static struct callout lbolt_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
92static int      fscale __unused = FSCALE;
93SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
94
95static void	loadav(void *arg);
96static void	lboltcb(void *arg);
97
98void
99sleepinit(void)
100{
101
102	hogticks = (hz / 10) * 2;	/* Default only. */
103	init_sleepqueues();
104}
105
106/*
107 * General sleep call.  Suspends the current process until a wakeup is
108 * performed on the specified identifier.  The process will then be made
109 * runnable with the specified priority.  Sleeps at most timo/hz seconds
110 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
111 * before and after sleeping, else signals are not checked.  Returns 0 if
112 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
113 * signal needs to be delivered, ERESTART is returned if the current system
114 * call should be restarted if possible, and EINTR is returned if the system
115 * call should be interrupted by the signal (return EINTR).
116 *
117 * The mutex argument is exited before the caller is suspended, and
118 * entered before msleep returns.  If priority includes the PDROP
119 * flag the mutex is not entered before returning.
120 */
121
122int
123msleep(ident, mtx, priority, wmesg, timo)
124	void *ident;
125	struct mtx *mtx;
126	int priority, timo;
127	const char *wmesg;
128{
129	struct sleepqueue *sq;
130	struct thread *td;
131	struct proc *p;
132	int catch, rval, sig;
133	WITNESS_SAVE_DECL(mtx);
134
135	td = curthread;
136	p = td->td_proc;
137#ifdef KTRACE
138	if (KTRPOINT(td, KTR_CSW))
139		ktrcsw(1, 0);
140#endif
141	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
142	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
143	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
144	    ("sleeping without a mutex"));
145	KASSERT(p != NULL, ("msleep1"));
146	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
147
148	if (cold) {
149		/*
150		 * During autoconfiguration, just return;
151		 * don't run any other procs or panic below,
152		 * in case this is the idle process and already asleep.
153		 * XXX: this used to do "s = splhigh(); splx(safepri);
154		 * splx(s);" to give interrupts a chance, but there is
155		 * no way to give interrupts a chance now.
156		 */
157		if (mtx != NULL && priority & PDROP)
158			mtx_unlock(mtx);
159		return (0);
160	}
161	catch = priority & PCATCH;
162	rval = 0;
163
164	/*
165	 * If we are already on a sleep queue, then remove us from that
166	 * sleep queue first.  We have to do this to handle recursive
167	 * sleeps.
168	 */
169	if (TD_ON_SLEEPQ(td))
170		sleepq_remove(td, td->td_wchan);
171
172	sq = sleepq_lookup(ident);
173	mtx_lock_spin(&sched_lock);
174
175	/*
176	 * If we are capable of async syscalls and there isn't already
177	 * another one ready to return, start a new thread
178	 * and queue it as ready to run. Note that there is danger here
179	 * because we need to make sure that we don't sleep allocating
180	 * the thread (recursion here might be bad).
181	 */
182	if (p->p_flag & P_SA || p->p_numthreads > 1) {
183		/*
184		 * Just don't bother if we are exiting
185		 * and not the exiting thread or thread was marked as
186		 * interrupted.
187		 */
188		if (catch) {
189			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
190				mtx_unlock_spin(&sched_lock);
191				sleepq_release(ident);
192				return (EINTR);
193			}
194			if (td->td_flags & TDF_INTERRUPT) {
195				mtx_unlock_spin(&sched_lock);
196				sleepq_release(ident);
197				return (td->td_intrval);
198			}
199		}
200	}
201	mtx_unlock_spin(&sched_lock);
202	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
203	    td, p->p_pid, p->p_comm, wmesg, ident);
204
205	DROP_GIANT();
206	if (mtx != NULL) {
207		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
208		WITNESS_SAVE(&mtx->mtx_object, mtx);
209		mtx_unlock(mtx);
210	}
211
212	/*
213	 * We put ourselves on the sleep queue and start our timeout
214	 * before calling thread_suspend_check, as we could stop there,
215	 * and a wakeup or a SIGCONT (or both) could occur while we were
216	 * stopped without resuming us.  Thus, we must be ready for sleep
217	 * when cursig() is called.  If the wakeup happens while we're
218	 * stopped, then td will no longer be on a sleep queue upon
219	 * return from cursig().
220	 */
221	sleepq_add(sq, ident, mtx, wmesg, 0);
222	if (timo)
223		sleepq_set_timeout(ident, timo);
224	if (catch) {
225		sig = sleepq_catch_signals(ident);
226		if (sig == 0 && !TD_ON_SLEEPQ(td)) {
227			mtx_lock_spin(&sched_lock);
228			td->td_flags &= ~TDF_SINTR;
229			mtx_unlock_spin(&sched_lock);
230			catch = 0;
231		}
232	} else
233		sig = 0;
234
235	/*
236	 * Adjust this threads priority.
237	 *
238	 * XXX: Do we need to save priority in td_base_pri?
239	 */
240	mtx_lock_spin(&sched_lock);
241	sched_prio(td, priority & PRIMASK);
242	mtx_unlock_spin(&sched_lock);
243
244	if (timo && catch)
245		rval = sleepq_timedwait_sig(ident, sig != 0);
246	else if (timo)
247		rval = sleepq_timedwait(ident, sig != 0);
248	else if (catch)
249		rval = sleepq_wait_sig(ident);
250	else {
251		sleepq_wait(ident);
252		rval = 0;
253	}
254
255	/*
256	 * We're awake from voluntary sleep.
257	 */
258	if (rval == 0 && catch)
259		rval = sleepq_calc_signal_retval(sig);
260#ifdef KTRACE
261	if (KTRPOINT(td, KTR_CSW))
262		ktrcsw(0, 0);
263#endif
264	PICKUP_GIANT();
265	if (mtx != NULL && !(priority & PDROP)) {
266		mtx_lock(mtx);
267		WITNESS_RESTORE(&mtx->mtx_object, mtx);
268	}
269	return (rval);
270}
271
272/*
273 * Make all processes sleeping on the specified identifier runnable.
274 */
275void
276wakeup(ident)
277	register void *ident;
278{
279
280	sleepq_broadcast(ident, 0, -1);
281}
282
283/*
284 * Make a process sleeping on the specified identifier runnable.
285 * May wake more than one process if a target process is currently
286 * swapped out.
287 */
288void
289wakeup_one(ident)
290	register void *ident;
291{
292
293	sleepq_signal(ident, 0, -1);
294}
295
296/*
297 * The machine independent parts of mi_switch().
298 */
299void
300mi_switch(int flags)
301{
302	struct bintime new_switchtime;
303	struct thread *td;
304	struct proc *p;
305
306	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
307	td = curthread;			/* XXX */
308	p = td->td_proc;		/* XXX */
309	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
310#ifdef INVARIANTS
311	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
312		mtx_assert(&Giant, MA_NOTOWNED);
313#endif
314	KASSERT(td->td_critnest == 1,
315	    ("mi_switch: switch in a critical section"));
316	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
317	    ("mi_switch: switch must be voluntary or involuntary"));
318
319	if (flags & SW_VOL)
320		p->p_stats->p_ru.ru_nvcsw++;
321	else
322		p->p_stats->p_ru.ru_nivcsw++;
323	/*
324	 * Compute the amount of time during which the current
325	 * process was running, and add that to its total so far.
326	 */
327	binuptime(&new_switchtime);
328	bintime_add(&p->p_runtime, &new_switchtime);
329	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
330
331	td->td_generation++;	/* bump preempt-detect counter */
332
333#ifdef DDB
334	/*
335	 * Don't perform context switches from the debugger.
336	 */
337	if (db_active) {
338		mtx_unlock_spin(&sched_lock);
339		db_print_backtrace();
340		db_error("Context switches not allowed in the debugger");
341	}
342#endif
343
344	/*
345	 * Check if the process exceeds its cpu resource allocation.  If
346	 * over max, arrange to kill the process in ast().
347	 */
348	if (p->p_cpulimit != RLIM_INFINITY &&
349	    p->p_runtime.sec > p->p_cpulimit) {
350		p->p_sflag |= PS_XCPU;
351		td->td_flags |= TDF_ASTPENDING;
352	}
353
354	/*
355	 * Finish up stats for outgoing thread.
356	 */
357	cnt.v_swtch++;
358	PCPU_SET(switchtime, new_switchtime);
359	PCPU_SET(switchticks, ticks);
360	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
361	    p->p_comm);
362	if (td->td_proc->p_flag & P_SA)
363		thread_switchout(td);
364	sched_switch(td);
365
366	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
367	    p->p_comm);
368
369	/*
370	 * If the last thread was exiting, finish cleaning it up.
371	 */
372	if ((td = PCPU_GET(deadthread))) {
373		PCPU_SET(deadthread, NULL);
374		thread_stash(td);
375	}
376}
377
378/*
379 * Change process state to be runnable,
380 * placing it on the run queue if it is in memory,
381 * and awakening the swapper if it isn't in memory.
382 */
383void
384setrunnable(struct thread *td)
385{
386	struct proc *p;
387
388	p = td->td_proc;
389	mtx_assert(&sched_lock, MA_OWNED);
390	switch (p->p_state) {
391	case PRS_ZOMBIE:
392		panic("setrunnable(1)");
393	default:
394		break;
395	}
396	switch (td->td_state) {
397	case TDS_RUNNING:
398	case TDS_RUNQ:
399		return;
400	case TDS_INHIBITED:
401		/*
402		 * If we are only inhibited because we are swapped out
403		 * then arange to swap in this process. Otherwise just return.
404		 */
405		if (td->td_inhibitors != TDI_SWAPPED)
406			return;
407		/* XXX: intentional fall-through ? */
408	case TDS_CAN_RUN:
409		break;
410	default:
411		printf("state is 0x%x", td->td_state);
412		panic("setrunnable(2)");
413	}
414	if ((p->p_sflag & PS_INMEM) == 0) {
415		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
416			p->p_sflag |= PS_SWAPINREQ;
417			wakeup(&proc0);
418		}
419	} else
420		sched_wakeup(td);
421}
422
423/*
424 * Compute a tenex style load average of a quantity on
425 * 1, 5 and 15 minute intervals.
426 * XXXKSE   Needs complete rewrite when correct info is available.
427 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
428 */
429static void
430loadav(void *arg)
431{
432	int i, nrun;
433	struct loadavg *avg;
434
435	nrun = sched_load();
436	avg = &averunnable;
437
438	for (i = 0; i < 3; i++)
439		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
440		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
441
442	/*
443	 * Schedule the next update to occur after 5 seconds, but add a
444	 * random variation to avoid synchronisation with processes that
445	 * run at regular intervals.
446	 */
447	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
448	    loadav, NULL);
449}
450
451static void
452lboltcb(void *arg)
453{
454	wakeup(&lbolt);
455	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
456}
457
458/* ARGSUSED */
459static void
460synch_setup(dummy)
461	void *dummy;
462{
463	callout_init(&loadav_callout, CALLOUT_MPSAFE);
464	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
465
466	/* Kick off timeout driven events by calling first time. */
467	loadav(NULL);
468	lboltcb(NULL);
469}
470
471/*
472 * General purpose yield system call
473 */
474int
475yield(struct thread *td, struct yield_args *uap)
476{
477	struct ksegrp *kg;
478
479	kg = td->td_ksegrp;
480	mtx_assert(&Giant, MA_NOTOWNED);
481	mtx_lock_spin(&sched_lock);
482	sched_prio(td, PRI_MAX_TIMESHARE);
483	mi_switch(SW_VOL);
484	mtx_unlock_spin(&sched_lock);
485	td->td_retval[0] = 0;
486	return (0);
487}
488