kern_synch.c revision 126885
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 126885 2004-03-12 19:06:18Z jhb $");
43
44#include "opt_ddb.h"
45#include "opt_ktrace.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/condvar.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/resourcevar.h>
56#include <sys/sched.h>
57#include <sys/signalvar.h>
58#include <sys/sleepqueue.h>
59#include <sys/smp.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/sysproto.h>
63#include <sys/vmmeter.h>
64#ifdef DDB
65#include <ddb/ddb.h>
66#endif
67#ifdef KTRACE
68#include <sys/uio.h>
69#include <sys/ktrace.h>
70#endif
71
72#include <machine/cpu.h>
73
74static void synch_setup(void *dummy);
75SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
76
77int	hogticks;
78int	lbolt;
79
80static struct callout loadav_callout;
81static struct callout lbolt_callout;
82
83struct loadavg averunnable =
84	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
85/*
86 * Constants for averages over 1, 5, and 15 minutes
87 * when sampling at 5 second intervals.
88 */
89static fixpt_t cexp[3] = {
90	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
91	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
92	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
93};
94
95/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
96static int      fscale __unused = FSCALE;
97SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
98
99static void	loadav(void *arg);
100static void	lboltcb(void *arg);
101
102void
103sleepinit(void)
104{
105
106	hogticks = (hz / 10) * 2;	/* Default only. */
107	init_sleepqueues();
108}
109
110/*
111 * General sleep call.  Suspends the current process until a wakeup is
112 * performed on the specified identifier.  The process will then be made
113 * runnable with the specified priority.  Sleeps at most timo/hz seconds
114 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
115 * before and after sleeping, else signals are not checked.  Returns 0 if
116 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
117 * signal needs to be delivered, ERESTART is returned if the current system
118 * call should be restarted if possible, and EINTR is returned if the system
119 * call should be interrupted by the signal (return EINTR).
120 *
121 * The mutex argument is exited before the caller is suspended, and
122 * entered before msleep returns.  If priority includes the PDROP
123 * flag the mutex is not entered before returning.
124 */
125
126int
127msleep(ident, mtx, priority, wmesg, timo)
128	void *ident;
129	struct mtx *mtx;
130	int priority, timo;
131	const char *wmesg;
132{
133	struct sleepqueue *sq;
134	struct thread *td;
135	struct proc *p;
136	int catch, rval, sig;
137	WITNESS_SAVE_DECL(mtx);
138
139	td = curthread;
140	p = td->td_proc;
141#ifdef KTRACE
142	if (KTRPOINT(td, KTR_CSW))
143		ktrcsw(1, 0);
144#endif
145	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
146	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
147	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
148	    ("sleeping without a mutex"));
149	KASSERT(p != NULL, ("msleep1"));
150	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
151
152	if (cold) {
153		/*
154		 * During autoconfiguration, just return;
155		 * don't run any other procs or panic below,
156		 * in case this is the idle process and already asleep.
157		 * XXX: this used to do "s = splhigh(); splx(safepri);
158		 * splx(s);" to give interrupts a chance, but there is
159		 * no way to give interrupts a chance now.
160		 */
161		if (mtx != NULL && priority & PDROP)
162			mtx_unlock(mtx);
163		return (0);
164	}
165	catch = priority & PCATCH;
166	rval = 0;
167
168	/*
169	 * If we are already on a sleep queue, then remove us from that
170	 * sleep queue first.  We have to do this to handle recursive
171	 * sleeps.
172	 */
173	if (TD_ON_SLEEPQ(td))
174		sleepq_remove(td, td->td_wchan);
175
176	sq = sleepq_lookup(ident);
177	mtx_lock_spin(&sched_lock);
178
179	/*
180	 * If we are capable of async syscalls and there isn't already
181	 * another one ready to return, start a new thread
182	 * and queue it as ready to run. Note that there is danger here
183	 * because we need to make sure that we don't sleep allocating
184	 * the thread (recursion here might be bad).
185	 */
186	if (p->p_flag & P_SA || p->p_numthreads > 1) {
187		/*
188		 * Just don't bother if we are exiting
189		 * and not the exiting thread or thread was marked as
190		 * interrupted.
191		 */
192		if (catch) {
193			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
194				mtx_unlock_spin(&sched_lock);
195				sleepq_release(ident);
196				return (EINTR);
197			}
198			if (td->td_flags & TDF_INTERRUPT) {
199				mtx_unlock_spin(&sched_lock);
200				sleepq_release(ident);
201				return (td->td_intrval);
202			}
203		}
204	}
205	mtx_unlock_spin(&sched_lock);
206	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
207	    td, p->p_pid, p->p_comm, wmesg, ident);
208
209	DROP_GIANT();
210	if (mtx != NULL) {
211		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
212		WITNESS_SAVE(&mtx->mtx_object, mtx);
213		mtx_unlock(mtx);
214	}
215
216	/*
217	 * We put ourselves on the sleep queue and start our timeout
218	 * before calling thread_suspend_check, as we could stop there,
219	 * and a wakeup or a SIGCONT (or both) could occur while we were
220	 * stopped without resuming us.  Thus, we must be ready for sleep
221	 * when cursig() is called.  If the wakeup happens while we're
222	 * stopped, then td will no longer be on a sleep queue upon
223	 * return from cursig().
224	 */
225	sleepq_add(sq, ident, mtx, wmesg, 0);
226	if (timo)
227		sleepq_set_timeout(ident, timo);
228	if (catch) {
229		sig = sleepq_catch_signals(ident);
230		if (sig == 0 && !TD_ON_SLEEPQ(td)) {
231			mtx_lock_spin(&sched_lock);
232			td->td_flags &= ~TDF_SINTR;
233			mtx_unlock_spin(&sched_lock);
234			catch = 0;
235		}
236	} else
237		sig = 0;
238
239	/*
240	 * Adjust this threads priority.
241	 *
242	 * XXX: Do we need to save priority in td_base_pri?
243	 */
244	mtx_lock_spin(&sched_lock);
245	sched_prio(td, priority & PRIMASK);
246	mtx_unlock_spin(&sched_lock);
247
248	if (timo && catch)
249		rval = sleepq_timedwait_sig(ident, sig != 0);
250	else if (timo)
251		rval = sleepq_timedwait(ident, sig != 0);
252	else if (catch)
253		rval = sleepq_wait_sig(ident);
254	else {
255		sleepq_wait(ident);
256		rval = 0;
257	}
258
259	/*
260	 * We're awake from voluntary sleep.
261	 */
262	if (rval == 0 && catch)
263		rval = sleepq_calc_signal_retval(sig);
264#ifdef KTRACE
265	if (KTRPOINT(td, KTR_CSW))
266		ktrcsw(0, 0);
267#endif
268	PICKUP_GIANT();
269	if (mtx != NULL && !(priority & PDROP)) {
270		mtx_lock(mtx);
271		WITNESS_RESTORE(&mtx->mtx_object, mtx);
272	}
273	return (rval);
274}
275
276/*
277 * Make all processes sleeping on the specified identifier runnable.
278 */
279void
280wakeup(ident)
281	register void *ident;
282{
283
284	sleepq_broadcast(ident, 0, -1);
285}
286
287/*
288 * Make a process sleeping on the specified identifier runnable.
289 * May wake more than one process if a target process is currently
290 * swapped out.
291 */
292void
293wakeup_one(ident)
294	register void *ident;
295{
296
297	sleepq_signal(ident, 0, -1);
298}
299
300/*
301 * The machine independent parts of mi_switch().
302 */
303void
304mi_switch(int flags)
305{
306	struct bintime new_switchtime;
307	struct thread *td;
308	struct proc *p;
309
310	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
311	td = curthread;			/* XXX */
312	p = td->td_proc;		/* XXX */
313	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
314#ifdef INVARIANTS
315	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
316		mtx_assert(&Giant, MA_NOTOWNED);
317#endif
318	KASSERT(td->td_critnest == 1,
319	    ("mi_switch: switch in a critical section"));
320	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
321	    ("mi_switch: switch must be voluntary or involuntary"));
322
323	if (flags & SW_VOL)
324		p->p_stats->p_ru.ru_nvcsw++;
325	else
326		p->p_stats->p_ru.ru_nivcsw++;
327	/*
328	 * Compute the amount of time during which the current
329	 * process was running, and add that to its total so far.
330	 */
331	binuptime(&new_switchtime);
332	bintime_add(&p->p_runtime, &new_switchtime);
333	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
334
335	td->td_generation++;	/* bump preempt-detect counter */
336
337#ifdef DDB
338	/*
339	 * Don't perform context switches from the debugger.
340	 */
341	if (db_active) {
342		mtx_unlock_spin(&sched_lock);
343		db_print_backtrace();
344		db_error("Context switches not allowed in the debugger");
345	}
346#endif
347
348	/*
349	 * Check if the process exceeds its cpu resource allocation.  If
350	 * over max, arrange to kill the process in ast().
351	 */
352	if (p->p_cpulimit != RLIM_INFINITY &&
353	    p->p_runtime.sec > p->p_cpulimit) {
354		p->p_sflag |= PS_XCPU;
355		td->td_flags |= TDF_ASTPENDING;
356	}
357
358	/*
359	 * Finish up stats for outgoing thread.
360	 */
361	cnt.v_swtch++;
362	PCPU_SET(switchtime, new_switchtime);
363	PCPU_SET(switchticks, ticks);
364	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
365	    p->p_comm);
366	if (td->td_proc->p_flag & P_SA)
367		thread_switchout(td);
368	sched_switch(td);
369
370	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
371	    p->p_comm);
372
373	/*
374	 * If the last thread was exiting, finish cleaning it up.
375	 */
376	if ((td = PCPU_GET(deadthread))) {
377		PCPU_SET(deadthread, NULL);
378		thread_stash(td);
379	}
380}
381
382/*
383 * Change process state to be runnable,
384 * placing it on the run queue if it is in memory,
385 * and awakening the swapper if it isn't in memory.
386 */
387void
388setrunnable(struct thread *td)
389{
390	struct proc *p;
391
392	p = td->td_proc;
393	mtx_assert(&sched_lock, MA_OWNED);
394	switch (p->p_state) {
395	case PRS_ZOMBIE:
396		panic("setrunnable(1)");
397	default:
398		break;
399	}
400	switch (td->td_state) {
401	case TDS_RUNNING:
402	case TDS_RUNQ:
403		return;
404	case TDS_INHIBITED:
405		/*
406		 * If we are only inhibited because we are swapped out
407		 * then arange to swap in this process. Otherwise just return.
408		 */
409		if (td->td_inhibitors != TDI_SWAPPED)
410			return;
411		/* XXX: intentional fall-through ? */
412	case TDS_CAN_RUN:
413		break;
414	default:
415		printf("state is 0x%x", td->td_state);
416		panic("setrunnable(2)");
417	}
418	if ((p->p_sflag & PS_INMEM) == 0) {
419		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
420			p->p_sflag |= PS_SWAPINREQ;
421			wakeup(&proc0);
422		}
423	} else
424		sched_wakeup(td);
425}
426
427/*
428 * Compute a tenex style load average of a quantity on
429 * 1, 5 and 15 minute intervals.
430 * XXXKSE   Needs complete rewrite when correct info is available.
431 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
432 */
433static void
434loadav(void *arg)
435{
436	int i, nrun;
437	struct loadavg *avg;
438
439	nrun = sched_load();
440	avg = &averunnable;
441
442	for (i = 0; i < 3; i++)
443		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
444		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
445
446	/*
447	 * Schedule the next update to occur after 5 seconds, but add a
448	 * random variation to avoid synchronisation with processes that
449	 * run at regular intervals.
450	 */
451	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
452	    loadav, NULL);
453}
454
455static void
456lboltcb(void *arg)
457{
458	wakeup(&lbolt);
459	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
460}
461
462/* ARGSUSED */
463static void
464synch_setup(dummy)
465	void *dummy;
466{
467	callout_init(&loadav_callout, CALLOUT_MPSAFE);
468	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
469
470	/* Kick off timeout driven events by calling first time. */
471	loadav(NULL);
472	lboltcb(NULL);
473}
474
475/*
476 * General purpose yield system call
477 */
478int
479yield(struct thread *td, struct yield_args *uap)
480{
481	struct ksegrp *kg;
482
483	kg = td->td_ksegrp;
484	mtx_assert(&Giant, MA_NOTOWNED);
485	mtx_lock_spin(&sched_lock);
486	sched_prio(td, PRI_MAX_TIMESHARE);
487	mi_switch(SW_VOL);
488	mtx_unlock_spin(&sched_lock);
489	td->td_retval[0] = 0;
490	return (0);
491}
492