kern_synch.c revision 12662
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.15 1995/12/02 18:58:40 bde Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/buf.h>
47#include <sys/signalvar.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <sys/vmmeter.h>
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/vm_extern.h>
54#ifdef KTRACE
55#include <sys/ktrace.h>
56#endif
57
58#include <machine/cpu.h>
59
60static void rqinit __P((void *));
61SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
62
63u_char	curpriority;		/* usrpri of curproc */
64int	lbolt;			/* once a second sleep address */
65
66extern void	endtsleep __P((void *));
67extern void	updatepri __P((struct proc *p));
68
69/*
70 * Force switch among equal priority processes every 100ms.
71 */
72/* ARGSUSED */
73void
74roundrobin(arg)
75	void *arg;
76{
77
78	need_resched();
79	timeout(roundrobin, NULL, hz / 10);
80}
81
82/*
83 * Constants for digital decay and forget:
84 *	90% of (p_estcpu) usage in 5 * loadav time
85 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
86 *          Note that, as ps(1) mentions, this can let percentages
87 *          total over 100% (I've seen 137.9% for 3 processes).
88 *
89 * Note that hardclock updates p_estcpu and p_cpticks independently.
90 *
91 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
92 * That is, the system wants to compute a value of decay such
93 * that the following for loop:
94 * 	for (i = 0; i < (5 * loadavg); i++)
95 * 		p_estcpu *= decay;
96 * will compute
97 * 	p_estcpu *= 0.1;
98 * for all values of loadavg:
99 *
100 * Mathematically this loop can be expressed by saying:
101 * 	decay ** (5 * loadavg) ~= .1
102 *
103 * The system computes decay as:
104 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
105 *
106 * We wish to prove that the system's computation of decay
107 * will always fulfill the equation:
108 * 	decay ** (5 * loadavg) ~= .1
109 *
110 * If we compute b as:
111 * 	b = 2 * loadavg
112 * then
113 * 	decay = b / (b + 1)
114 *
115 * We now need to prove two things:
116 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
117 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
118 *
119 * Facts:
120 *         For x close to zero, exp(x) =~ 1 + x, since
121 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
122 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
123 *         For x close to zero, ln(1+x) =~ x, since
124 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
125 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
126 *         ln(.1) =~ -2.30
127 *
128 * Proof of (1):
129 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
130 *	solving for factor,
131 *      ln(factor) =~ (-2.30/5*loadav), or
132 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
133 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
134 *
135 * Proof of (2):
136 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
137 *	solving for power,
138 *      power*ln(b/(b+1)) =~ -2.30, or
139 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
140 *
141 * Actual power values for the implemented algorithm are as follows:
142 *      loadav: 1       2       3       4
143 *      power:  5.68    10.32   14.94   19.55
144 */
145
146/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
147#define	loadfactor(loadav)	(2 * (loadav))
148#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
149
150/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
151fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
152
153/*
154 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
155 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
156 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
157 *
158 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
159 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
160 *
161 * If you dont want to bother with the faster/more-accurate formula, you
162 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
163 * (more general) method of calculating the %age of CPU used by a process.
164 */
165#define	CCPU_SHIFT	11
166
167/*
168 * Recompute process priorities, every hz ticks.
169 */
170/* ARGSUSED */
171void
172schedcpu(arg)
173	void *arg;
174{
175	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
176	register struct proc *p;
177	register int s;
178	register unsigned int newcpu;
179
180	wakeup((caddr_t)&lbolt);
181	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
182		/*
183		 * Increment time in/out of memory and sleep time
184		 * (if sleeping).  We ignore overflow; with 16-bit int's
185		 * (remember them?) overflow takes 45 days.
186		 */
187		p->p_swtime++;
188		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
189			p->p_slptime++;
190		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
191		/*
192		 * If the process has slept the entire second,
193		 * stop recalculating its priority until it wakes up.
194		 */
195		if (p->p_slptime > 1)
196			continue;
197		s = splstatclock();	/* prevent state changes */
198		/*
199		 * p_pctcpu is only for ps.
200		 */
201#if	(FSHIFT >= CCPU_SHIFT)
202		p->p_pctcpu += (hz == 100)?
203			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
204                	100 * (((fixpt_t) p->p_cpticks)
205				<< (FSHIFT - CCPU_SHIFT)) / hz;
206#else
207		p->p_pctcpu += ((FSCALE - ccpu) *
208			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
209#endif
210		p->p_cpticks = 0;
211		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
212		p->p_estcpu = min(newcpu, UCHAR_MAX);
213		resetpriority(p);
214		if (p->p_priority >= PUSER) {
215#define	PPQ	(128 / NQS)		/* priorities per queue */
216			if ((p != curproc) &&
217			    p->p_stat == SRUN &&
218			    (p->p_flag & P_INMEM) &&
219			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
220				remrq(p);
221				p->p_priority = p->p_usrpri;
222				setrunqueue(p);
223			} else
224				p->p_priority = p->p_usrpri;
225		}
226		splx(s);
227	}
228	vmmeter();
229	timeout(schedcpu, (void *)0, hz);
230}
231
232/*
233 * Recalculate the priority of a process after it has slept for a while.
234 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
235 * least six times the loadfactor will decay p_estcpu to zero.
236 */
237void
238updatepri(p)
239	register struct proc *p;
240{
241	register unsigned int newcpu = p->p_estcpu;
242	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243
244	if (p->p_slptime > 5 * loadfac)
245		p->p_estcpu = 0;
246	else {
247		p->p_slptime--;	/* the first time was done in schedcpu */
248		while (newcpu && --p->p_slptime)
249			newcpu = (int) decay_cpu(loadfac, newcpu);
250		p->p_estcpu = min(newcpu, UCHAR_MAX);
251	}
252	resetpriority(p);
253}
254
255/*
256 * We're only looking at 7 bits of the address; everything is
257 * aligned to 4, lots of things are aligned to greater powers
258 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
259 */
260#define TABLESIZE	128
261#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
262struct slpque {
263	struct proc *sq_head;
264	struct proc **sq_tailp;
265} slpque[TABLESIZE];
266
267/*
268 * During autoconfiguration or after a panic, a sleep will simply
269 * lower the priority briefly to allow interrupts, then return.
270 * The priority to be used (safepri) is machine-dependent, thus this
271 * value is initialized and maintained in the machine-dependent layers.
272 * This priority will typically be 0, or the lowest priority
273 * that is safe for use on the interrupt stack; it can be made
274 * higher to block network software interrupts after panics.
275 */
276int safepri;
277
278/*
279 * General sleep call.  Suspends the current process until a wakeup is
280 * performed on the specified identifier.  The process will then be made
281 * runnable with the specified priority.  Sleeps at most timo/hz seconds
282 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
283 * before and after sleeping, else signals are not checked.  Returns 0 if
284 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
285 * signal needs to be delivered, ERESTART is returned if the current system
286 * call should be restarted if possible, and EINTR is returned if the system
287 * call should be interrupted by the signal (return EINTR).
288 */
289int
290tsleep(ident, priority, wmesg, timo)
291	void *ident;
292	int priority, timo;
293	char *wmesg;
294{
295	register struct proc *p = curproc;
296	register struct slpque *qp;
297	register s;
298	int sig, catch = priority & PCATCH;
299
300#ifdef KTRACE
301	if (KTRPOINT(p, KTR_CSW))
302		ktrcsw(p->p_tracep, 1, 0);
303#endif
304	s = splhigh();
305	if (cold || panicstr) {
306		/*
307		 * After a panic, or during autoconfiguration,
308		 * just give interrupts a chance, then just return;
309		 * don't run any other procs or panic below,
310		 * in case this is the idle process and already asleep.
311		 */
312		splx(safepri);
313		splx(s);
314		return (0);
315	}
316#ifdef DIAGNOSTIC
317	if (ident == NULL || p->p_stat != SRUN || p->p_back)
318		panic("tsleep");
319#endif
320	p->p_wchan = ident;
321	p->p_wmesg = wmesg;
322	p->p_slptime = 0;
323	p->p_priority = priority & PRIMASK;
324	qp = &slpque[LOOKUP(ident)];
325	if (qp->sq_head == 0)
326		qp->sq_head = p;
327	else
328		*qp->sq_tailp = p;
329	*(qp->sq_tailp = &p->p_forw) = 0;
330	if (timo)
331		timeout(endtsleep, (void *)p, timo);
332	/*
333	 * We put ourselves on the sleep queue and start our timeout
334	 * before calling CURSIG, as we could stop there, and a wakeup
335	 * or a SIGCONT (or both) could occur while we were stopped.
336	 * A SIGCONT would cause us to be marked as SSLEEP
337	 * without resuming us, thus we must be ready for sleep
338	 * when CURSIG is called.  If the wakeup happens while we're
339	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
340	 */
341	if (catch) {
342		p->p_flag |= P_SINTR;
343		if ((sig = CURSIG(p))) {
344			if (p->p_wchan)
345				unsleep(p);
346			p->p_stat = SRUN;
347			goto resume;
348		}
349		if (p->p_wchan == 0) {
350			catch = 0;
351			goto resume;
352		}
353	} else
354		sig = 0;
355	p->p_stat = SSLEEP;
356	p->p_stats->p_ru.ru_nvcsw++;
357	mi_switch();
358resume:
359	curpriority = p->p_usrpri;
360	splx(s);
361	p->p_flag &= ~P_SINTR;
362	if (p->p_flag & P_TIMEOUT) {
363		p->p_flag &= ~P_TIMEOUT;
364		if (sig == 0) {
365#ifdef KTRACE
366			if (KTRPOINT(p, KTR_CSW))
367				ktrcsw(p->p_tracep, 0, 0);
368#endif
369			return (EWOULDBLOCK);
370		}
371	} else if (timo)
372		untimeout(endtsleep, (void *)p);
373	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
374#ifdef KTRACE
375		if (KTRPOINT(p, KTR_CSW))
376			ktrcsw(p->p_tracep, 0, 0);
377#endif
378		if (p->p_sigacts->ps_sigintr & sigmask(sig))
379			return (EINTR);
380		return (ERESTART);
381	}
382#ifdef KTRACE
383	if (KTRPOINT(p, KTR_CSW))
384		ktrcsw(p->p_tracep, 0, 0);
385#endif
386	return (0);
387}
388
389/*
390 * Implement timeout for tsleep.
391 * If process hasn't been awakened (wchan non-zero),
392 * set timeout flag and undo the sleep.  If proc
393 * is stopped, just unsleep so it will remain stopped.
394 */
395void
396endtsleep(arg)
397	void *arg;
398{
399	register struct proc *p;
400	int s;
401
402	p = (struct proc *)arg;
403	s = splhigh();
404	if (p->p_wchan) {
405		if (p->p_stat == SSLEEP)
406			setrunnable(p);
407		else
408			unsleep(p);
409		p->p_flag |= P_TIMEOUT;
410	}
411	splx(s);
412}
413
414/*
415 * Short-term, non-interruptable sleep.
416 */
417void
418sleep(ident, priority)
419	void *ident;
420	int priority;
421{
422	register struct proc *p = curproc;
423	register struct slpque *qp;
424	register s;
425
426#ifdef DIAGNOSTIC
427	if (priority > PZERO) {
428		printf("sleep called with priority %d > PZERO, wchan: %p\n",
429		    priority, ident);
430		panic("old sleep");
431	}
432#endif
433	s = splhigh();
434	if (cold || panicstr) {
435		/*
436		 * After a panic, or during autoconfiguration,
437		 * just give interrupts a chance, then just return;
438		 * don't run any other procs or panic below,
439		 * in case this is the idle process and already asleep.
440		 */
441		splx(safepri);
442		splx(s);
443		return;
444	}
445#ifdef DIAGNOSTIC
446	if (ident == NULL || p->p_stat != SRUN || p->p_back)
447		panic("sleep");
448#endif
449	p->p_wchan = ident;
450	p->p_wmesg = NULL;
451	p->p_slptime = 0;
452	p->p_priority = priority;
453	qp = &slpque[LOOKUP(ident)];
454	if (qp->sq_head == 0)
455		qp->sq_head = p;
456	else
457		*qp->sq_tailp = p;
458	*(qp->sq_tailp = &p->p_forw) = 0;
459	p->p_stat = SSLEEP;
460	p->p_stats->p_ru.ru_nvcsw++;
461#ifdef KTRACE
462	if (KTRPOINT(p, KTR_CSW))
463		ktrcsw(p->p_tracep, 1, 0);
464#endif
465	mi_switch();
466#ifdef KTRACE
467	if (KTRPOINT(p, KTR_CSW))
468		ktrcsw(p->p_tracep, 0, 0);
469#endif
470	curpriority = p->p_usrpri;
471	splx(s);
472}
473
474/*
475 * Remove a process from its wait queue
476 */
477void
478unsleep(p)
479	register struct proc *p;
480{
481	register struct slpque *qp;
482	register struct proc **hp;
483	int s;
484
485	s = splhigh();
486	if (p->p_wchan) {
487		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
488		while (*hp != p)
489			hp = &(*hp)->p_forw;
490		*hp = p->p_forw;
491		if (qp->sq_tailp == &p->p_forw)
492			qp->sq_tailp = hp;
493		p->p_wchan = 0;
494	}
495	splx(s);
496}
497
498/*
499 * Make all processes sleeping on the specified identifier runnable.
500 */
501void
502wakeup(ident)
503	register void *ident;
504{
505	register struct slpque *qp;
506	register struct proc *p, **q;
507	int s;
508
509	s = splhigh();
510	qp = &slpque[LOOKUP(ident)];
511restart:
512	for (q = &qp->sq_head; *q; ) {
513		p = *q;
514#ifdef DIAGNOSTIC
515		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
516			panic("wakeup");
517#endif
518		if (p->p_wchan == ident) {
519			p->p_wchan = 0;
520			*q = p->p_forw;
521			if (qp->sq_tailp == &p->p_forw)
522				qp->sq_tailp = q;
523			if (p->p_stat == SSLEEP) {
524				/* OPTIMIZED EXPANSION OF setrunnable(p); */
525				if (p->p_slptime > 1)
526					updatepri(p);
527				p->p_slptime = 0;
528				p->p_stat = SRUN;
529				if (p->p_flag & P_INMEM)
530					setrunqueue(p);
531				/*
532				 * Since curpriority is a user priority,
533				 * p->p_priority is always better than
534				 * curpriority.
535				 */
536				if ((p->p_flag & P_INMEM) == 0)
537					wakeup((caddr_t)&proc0);
538				else
539					need_resched();
540				/* END INLINE EXPANSION */
541				goto restart;
542			}
543		} else
544			q = &p->p_forw;
545	}
546	splx(s);
547}
548
549/*
550 * The machine independent parts of mi_switch().
551 * Must be called at splstatclock() or higher.
552 */
553void
554mi_switch()
555{
556	register struct proc *p = curproc;	/* XXX */
557	register struct rlimit *rlim;
558	register long s, u;
559	struct timeval tv;
560
561	/*
562	 * Compute the amount of time during which the current
563	 * process was running, and add that to its total so far.
564	 */
565	microtime(&tv);
566	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
567	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
568	if (u < 0) {
569		u += 1000000;
570		s--;
571	} else if (u >= 1000000) {
572		u -= 1000000;
573		s++;
574	}
575	p->p_rtime.tv_usec = u;
576	p->p_rtime.tv_sec = s;
577
578	/*
579	 * Check if the process exceeds its cpu resource allocation.
580	 * If over max, kill it.  In any case, if it has run for more
581	 * than 10 minutes, reduce priority to give others a chance.
582	 */
583	if (p->p_stat != SZOMB) {
584		rlim = &p->p_rlimit[RLIMIT_CPU];
585		if (s >= rlim->rlim_cur) {
586			if (s >= rlim->rlim_max)
587				psignal(p, SIGKILL);
588			else {
589				psignal(p, SIGXCPU);
590				if (rlim->rlim_cur < rlim->rlim_max)
591					rlim->rlim_cur += 5;
592			}
593		}
594		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
595			p->p_nice = NZERO + 4;
596			resetpriority(p);
597		}
598	}
599
600	/*
601	 * Pick a new current process and record its start time.
602	 */
603	cnt.v_swtch++;
604	cpu_switch(p);
605	microtime(&runtime);
606}
607
608/*
609 * Initialize the (doubly-linked) run queues
610 * to be empty.
611 */
612/* ARGSUSED*/
613static void
614rqinit(dummy)
615	void *dummy;
616{
617	register int i;
618
619	for (i = 0; i < NQS; i++) {
620		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
621		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
622		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
623	}
624}
625
626/*
627 * Change process state to be runnable,
628 * placing it on the run queue if it is in memory,
629 * and awakening the swapper if it isn't in memory.
630 */
631void
632setrunnable(p)
633	register struct proc *p;
634{
635	register int s;
636
637	s = splhigh();
638	switch (p->p_stat) {
639	case 0:
640	case SRUN:
641	case SZOMB:
642	default:
643		panic("setrunnable");
644	case SSTOP:
645	case SSLEEP:
646		unsleep(p);		/* e.g. when sending signals */
647		break;
648
649	case SIDL:
650		break;
651	}
652	p->p_stat = SRUN;
653	if (p->p_flag & P_INMEM)
654		setrunqueue(p);
655	splx(s);
656	if (p->p_slptime > 1)
657		updatepri(p);
658	p->p_slptime = 0;
659	if ((p->p_flag & P_INMEM) == 0)
660		wakeup((caddr_t)&proc0);
661	else if (p->p_priority < curpriority)
662		need_resched();
663}
664
665/*
666 * Compute the priority of a process when running in user mode.
667 * Arrange to reschedule if the resulting priority is better
668 * than that of the current process.
669 */
670void
671resetpriority(p)
672	register struct proc *p;
673{
674	register unsigned int newpriority;
675
676	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
677		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
678		newpriority = min(newpriority, MAXPRI);
679		p->p_usrpri = newpriority;
680		if (newpriority < curpriority)
681			need_resched();
682	} else {
683		need_resched();
684	}
685}
686