kern_synch.c revision 12577
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.14 1995/12/02 17:10:35 bde Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/buf.h>
47#include <sys/signalvar.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <vm/vm.h>
51#ifdef KTRACE
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56
57static void rqinit __P((void *));
58SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
59
60u_char	curpriority;		/* usrpri of curproc */
61int	lbolt;			/* once a second sleep address */
62
63extern void	endtsleep __P((void *));
64extern void	updatepri __P((struct proc *p));
65
66/*
67 * Force switch among equal priority processes every 100ms.
68 */
69/* ARGSUSED */
70void
71roundrobin(arg)
72	void *arg;
73{
74
75	need_resched();
76	timeout(roundrobin, NULL, hz / 10);
77}
78
79/*
80 * Constants for digital decay and forget:
81 *	90% of (p_estcpu) usage in 5 * loadav time
82 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
83 *          Note that, as ps(1) mentions, this can let percentages
84 *          total over 100% (I've seen 137.9% for 3 processes).
85 *
86 * Note that hardclock updates p_estcpu and p_cpticks independently.
87 *
88 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
89 * That is, the system wants to compute a value of decay such
90 * that the following for loop:
91 * 	for (i = 0; i < (5 * loadavg); i++)
92 * 		p_estcpu *= decay;
93 * will compute
94 * 	p_estcpu *= 0.1;
95 * for all values of loadavg:
96 *
97 * Mathematically this loop can be expressed by saying:
98 * 	decay ** (5 * loadavg) ~= .1
99 *
100 * The system computes decay as:
101 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
102 *
103 * We wish to prove that the system's computation of decay
104 * will always fulfill the equation:
105 * 	decay ** (5 * loadavg) ~= .1
106 *
107 * If we compute b as:
108 * 	b = 2 * loadavg
109 * then
110 * 	decay = b / (b + 1)
111 *
112 * We now need to prove two things:
113 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
114 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
115 *
116 * Facts:
117 *         For x close to zero, exp(x) =~ 1 + x, since
118 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
119 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
120 *         For x close to zero, ln(1+x) =~ x, since
121 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
122 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
123 *         ln(.1) =~ -2.30
124 *
125 * Proof of (1):
126 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
127 *	solving for factor,
128 *      ln(factor) =~ (-2.30/5*loadav), or
129 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
130 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
131 *
132 * Proof of (2):
133 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
134 *	solving for power,
135 *      power*ln(b/(b+1)) =~ -2.30, or
136 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
137 *
138 * Actual power values for the implemented algorithm are as follows:
139 *      loadav: 1       2       3       4
140 *      power:  5.68    10.32   14.94   19.55
141 */
142
143/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
144#define	loadfactor(loadav)	(2 * (loadav))
145#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
146
147/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
148fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
149
150/*
151 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
152 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
153 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
154 *
155 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
156 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
157 *
158 * If you dont want to bother with the faster/more-accurate formula, you
159 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
160 * (more general) method of calculating the %age of CPU used by a process.
161 */
162#define	CCPU_SHIFT	11
163
164/*
165 * Recompute process priorities, every hz ticks.
166 */
167/* ARGSUSED */
168void
169schedcpu(arg)
170	void *arg;
171{
172	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
173	register struct proc *p;
174	register int s;
175	register unsigned int newcpu;
176
177	wakeup((caddr_t)&lbolt);
178	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
179		/*
180		 * Increment time in/out of memory and sleep time
181		 * (if sleeping).  We ignore overflow; with 16-bit int's
182		 * (remember them?) overflow takes 45 days.
183		 */
184		p->p_swtime++;
185		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
186			p->p_slptime++;
187		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
188		/*
189		 * If the process has slept the entire second,
190		 * stop recalculating its priority until it wakes up.
191		 */
192		if (p->p_slptime > 1)
193			continue;
194		s = splstatclock();	/* prevent state changes */
195		/*
196		 * p_pctcpu is only for ps.
197		 */
198#if	(FSHIFT >= CCPU_SHIFT)
199		p->p_pctcpu += (hz == 100)?
200			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
201                	100 * (((fixpt_t) p->p_cpticks)
202				<< (FSHIFT - CCPU_SHIFT)) / hz;
203#else
204		p->p_pctcpu += ((FSCALE - ccpu) *
205			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
206#endif
207		p->p_cpticks = 0;
208		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
209		p->p_estcpu = min(newcpu, UCHAR_MAX);
210		resetpriority(p);
211		if (p->p_priority >= PUSER) {
212#define	PPQ	(128 / NQS)		/* priorities per queue */
213			if ((p != curproc) &&
214			    p->p_stat == SRUN &&
215			    (p->p_flag & P_INMEM) &&
216			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
217				remrq(p);
218				p->p_priority = p->p_usrpri;
219				setrunqueue(p);
220			} else
221				p->p_priority = p->p_usrpri;
222		}
223		splx(s);
224	}
225	vmmeter();
226	timeout(schedcpu, (void *)0, hz);
227}
228
229/*
230 * Recalculate the priority of a process after it has slept for a while.
231 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
232 * least six times the loadfactor will decay p_estcpu to zero.
233 */
234void
235updatepri(p)
236	register struct proc *p;
237{
238	register unsigned int newcpu = p->p_estcpu;
239	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240
241	if (p->p_slptime > 5 * loadfac)
242		p->p_estcpu = 0;
243	else {
244		p->p_slptime--;	/* the first time was done in schedcpu */
245		while (newcpu && --p->p_slptime)
246			newcpu = (int) decay_cpu(loadfac, newcpu);
247		p->p_estcpu = min(newcpu, UCHAR_MAX);
248	}
249	resetpriority(p);
250}
251
252/*
253 * We're only looking at 7 bits of the address; everything is
254 * aligned to 4, lots of things are aligned to greater powers
255 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
256 */
257#define TABLESIZE	128
258#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
259struct slpque {
260	struct proc *sq_head;
261	struct proc **sq_tailp;
262} slpque[TABLESIZE];
263
264/*
265 * During autoconfiguration or after a panic, a sleep will simply
266 * lower the priority briefly to allow interrupts, then return.
267 * The priority to be used (safepri) is machine-dependent, thus this
268 * value is initialized and maintained in the machine-dependent layers.
269 * This priority will typically be 0, or the lowest priority
270 * that is safe for use on the interrupt stack; it can be made
271 * higher to block network software interrupts after panics.
272 */
273int safepri;
274
275/*
276 * General sleep call.  Suspends the current process until a wakeup is
277 * performed on the specified identifier.  The process will then be made
278 * runnable with the specified priority.  Sleeps at most timo/hz seconds
279 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
280 * before and after sleeping, else signals are not checked.  Returns 0 if
281 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
282 * signal needs to be delivered, ERESTART is returned if the current system
283 * call should be restarted if possible, and EINTR is returned if the system
284 * call should be interrupted by the signal (return EINTR).
285 */
286int
287tsleep(ident, priority, wmesg, timo)
288	void *ident;
289	int priority, timo;
290	char *wmesg;
291{
292	register struct proc *p = curproc;
293	register struct slpque *qp;
294	register s;
295	int sig, catch = priority & PCATCH;
296
297#ifdef KTRACE
298	if (KTRPOINT(p, KTR_CSW))
299		ktrcsw(p->p_tracep, 1, 0);
300#endif
301	s = splhigh();
302	if (cold || panicstr) {
303		/*
304		 * After a panic, or during autoconfiguration,
305		 * just give interrupts a chance, then just return;
306		 * don't run any other procs or panic below,
307		 * in case this is the idle process and already asleep.
308		 */
309		splx(safepri);
310		splx(s);
311		return (0);
312	}
313#ifdef DIAGNOSTIC
314	if (ident == NULL || p->p_stat != SRUN || p->p_back)
315		panic("tsleep");
316#endif
317	p->p_wchan = ident;
318	p->p_wmesg = wmesg;
319	p->p_slptime = 0;
320	p->p_priority = priority & PRIMASK;
321	qp = &slpque[LOOKUP(ident)];
322	if (qp->sq_head == 0)
323		qp->sq_head = p;
324	else
325		*qp->sq_tailp = p;
326	*(qp->sq_tailp = &p->p_forw) = 0;
327	if (timo)
328		timeout(endtsleep, (void *)p, timo);
329	/*
330	 * We put ourselves on the sleep queue and start our timeout
331	 * before calling CURSIG, as we could stop there, and a wakeup
332	 * or a SIGCONT (or both) could occur while we were stopped.
333	 * A SIGCONT would cause us to be marked as SSLEEP
334	 * without resuming us, thus we must be ready for sleep
335	 * when CURSIG is called.  If the wakeup happens while we're
336	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
337	 */
338	if (catch) {
339		p->p_flag |= P_SINTR;
340		if ((sig = CURSIG(p))) {
341			if (p->p_wchan)
342				unsleep(p);
343			p->p_stat = SRUN;
344			goto resume;
345		}
346		if (p->p_wchan == 0) {
347			catch = 0;
348			goto resume;
349		}
350	} else
351		sig = 0;
352	p->p_stat = SSLEEP;
353	p->p_stats->p_ru.ru_nvcsw++;
354	mi_switch();
355resume:
356	curpriority = p->p_usrpri;
357	splx(s);
358	p->p_flag &= ~P_SINTR;
359	if (p->p_flag & P_TIMEOUT) {
360		p->p_flag &= ~P_TIMEOUT;
361		if (sig == 0) {
362#ifdef KTRACE
363			if (KTRPOINT(p, KTR_CSW))
364				ktrcsw(p->p_tracep, 0, 0);
365#endif
366			return (EWOULDBLOCK);
367		}
368	} else if (timo)
369		untimeout(endtsleep, (void *)p);
370	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
371#ifdef KTRACE
372		if (KTRPOINT(p, KTR_CSW))
373			ktrcsw(p->p_tracep, 0, 0);
374#endif
375		if (p->p_sigacts->ps_sigintr & sigmask(sig))
376			return (EINTR);
377		return (ERESTART);
378	}
379#ifdef KTRACE
380	if (KTRPOINT(p, KTR_CSW))
381		ktrcsw(p->p_tracep, 0, 0);
382#endif
383	return (0);
384}
385
386/*
387 * Implement timeout for tsleep.
388 * If process hasn't been awakened (wchan non-zero),
389 * set timeout flag and undo the sleep.  If proc
390 * is stopped, just unsleep so it will remain stopped.
391 */
392void
393endtsleep(arg)
394	void *arg;
395{
396	register struct proc *p;
397	int s;
398
399	p = (struct proc *)arg;
400	s = splhigh();
401	if (p->p_wchan) {
402		if (p->p_stat == SSLEEP)
403			setrunnable(p);
404		else
405			unsleep(p);
406		p->p_flag |= P_TIMEOUT;
407	}
408	splx(s);
409}
410
411/*
412 * Short-term, non-interruptable sleep.
413 */
414void
415sleep(ident, priority)
416	void *ident;
417	int priority;
418{
419	register struct proc *p = curproc;
420	register struct slpque *qp;
421	register s;
422
423#ifdef DIAGNOSTIC
424	if (priority > PZERO) {
425		printf("sleep called with priority %d > PZERO, wchan: %p\n",
426		    priority, ident);
427		panic("old sleep");
428	}
429#endif
430	s = splhigh();
431	if (cold || panicstr) {
432		/*
433		 * After a panic, or during autoconfiguration,
434		 * just give interrupts a chance, then just return;
435		 * don't run any other procs or panic below,
436		 * in case this is the idle process and already asleep.
437		 */
438		splx(safepri);
439		splx(s);
440		return;
441	}
442#ifdef DIAGNOSTIC
443	if (ident == NULL || p->p_stat != SRUN || p->p_back)
444		panic("sleep");
445#endif
446	p->p_wchan = ident;
447	p->p_wmesg = NULL;
448	p->p_slptime = 0;
449	p->p_priority = priority;
450	qp = &slpque[LOOKUP(ident)];
451	if (qp->sq_head == 0)
452		qp->sq_head = p;
453	else
454		*qp->sq_tailp = p;
455	*(qp->sq_tailp = &p->p_forw) = 0;
456	p->p_stat = SSLEEP;
457	p->p_stats->p_ru.ru_nvcsw++;
458#ifdef KTRACE
459	if (KTRPOINT(p, KTR_CSW))
460		ktrcsw(p->p_tracep, 1, 0);
461#endif
462	mi_switch();
463#ifdef KTRACE
464	if (KTRPOINT(p, KTR_CSW))
465		ktrcsw(p->p_tracep, 0, 0);
466#endif
467	curpriority = p->p_usrpri;
468	splx(s);
469}
470
471/*
472 * Remove a process from its wait queue
473 */
474void
475unsleep(p)
476	register struct proc *p;
477{
478	register struct slpque *qp;
479	register struct proc **hp;
480	int s;
481
482	s = splhigh();
483	if (p->p_wchan) {
484		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
485		while (*hp != p)
486			hp = &(*hp)->p_forw;
487		*hp = p->p_forw;
488		if (qp->sq_tailp == &p->p_forw)
489			qp->sq_tailp = hp;
490		p->p_wchan = 0;
491	}
492	splx(s);
493}
494
495/*
496 * Make all processes sleeping on the specified identifier runnable.
497 */
498void
499wakeup(ident)
500	register void *ident;
501{
502	register struct slpque *qp;
503	register struct proc *p, **q;
504	int s;
505
506	s = splhigh();
507	qp = &slpque[LOOKUP(ident)];
508restart:
509	for (q = &qp->sq_head; *q; ) {
510		p = *q;
511#ifdef DIAGNOSTIC
512		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
513			panic("wakeup");
514#endif
515		if (p->p_wchan == ident) {
516			p->p_wchan = 0;
517			*q = p->p_forw;
518			if (qp->sq_tailp == &p->p_forw)
519				qp->sq_tailp = q;
520			if (p->p_stat == SSLEEP) {
521				/* OPTIMIZED EXPANSION OF setrunnable(p); */
522				if (p->p_slptime > 1)
523					updatepri(p);
524				p->p_slptime = 0;
525				p->p_stat = SRUN;
526				if (p->p_flag & P_INMEM)
527					setrunqueue(p);
528				/*
529				 * Since curpriority is a user priority,
530				 * p->p_priority is always better than
531				 * curpriority.
532				 */
533				if ((p->p_flag & P_INMEM) == 0)
534					wakeup((caddr_t)&proc0);
535				else
536					need_resched();
537				/* END INLINE EXPANSION */
538				goto restart;
539			}
540		} else
541			q = &p->p_forw;
542	}
543	splx(s);
544}
545
546/*
547 * The machine independent parts of mi_switch().
548 * Must be called at splstatclock() or higher.
549 */
550void
551mi_switch()
552{
553	register struct proc *p = curproc;	/* XXX */
554	register struct rlimit *rlim;
555	register long s, u;
556	struct timeval tv;
557
558	/*
559	 * Compute the amount of time during which the current
560	 * process was running, and add that to its total so far.
561	 */
562	microtime(&tv);
563	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
564	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
565	if (u < 0) {
566		u += 1000000;
567		s--;
568	} else if (u >= 1000000) {
569		u -= 1000000;
570		s++;
571	}
572	p->p_rtime.tv_usec = u;
573	p->p_rtime.tv_sec = s;
574
575	/*
576	 * Check if the process exceeds its cpu resource allocation.
577	 * If over max, kill it.  In any case, if it has run for more
578	 * than 10 minutes, reduce priority to give others a chance.
579	 */
580	if (p->p_stat != SZOMB) {
581		rlim = &p->p_rlimit[RLIMIT_CPU];
582		if (s >= rlim->rlim_cur) {
583			if (s >= rlim->rlim_max)
584				psignal(p, SIGKILL);
585			else {
586				psignal(p, SIGXCPU);
587				if (rlim->rlim_cur < rlim->rlim_max)
588					rlim->rlim_cur += 5;
589			}
590		}
591		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
592			p->p_nice = NZERO + 4;
593			resetpriority(p);
594		}
595	}
596
597	/*
598	 * Pick a new current process and record its start time.
599	 */
600	cnt.v_swtch++;
601	cpu_switch(p);
602	microtime(&runtime);
603}
604
605/*
606 * Initialize the (doubly-linked) run queues
607 * to be empty.
608 */
609/* ARGSUSED*/
610static void
611rqinit(dummy)
612	void *dummy;
613{
614	register int i;
615
616	for (i = 0; i < NQS; i++) {
617		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
618		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
619		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
620	}
621}
622
623/*
624 * Change process state to be runnable,
625 * placing it on the run queue if it is in memory,
626 * and awakening the swapper if it isn't in memory.
627 */
628void
629setrunnable(p)
630	register struct proc *p;
631{
632	register int s;
633
634	s = splhigh();
635	switch (p->p_stat) {
636	case 0:
637	case SRUN:
638	case SZOMB:
639	default:
640		panic("setrunnable");
641	case SSTOP:
642	case SSLEEP:
643		unsleep(p);		/* e.g. when sending signals */
644		break;
645
646	case SIDL:
647		break;
648	}
649	p->p_stat = SRUN;
650	if (p->p_flag & P_INMEM)
651		setrunqueue(p);
652	splx(s);
653	if (p->p_slptime > 1)
654		updatepri(p);
655	p->p_slptime = 0;
656	if ((p->p_flag & P_INMEM) == 0)
657		wakeup((caddr_t)&proc0);
658	else if (p->p_priority < curpriority)
659		need_resched();
660}
661
662/*
663 * Compute the priority of a process when running in user mode.
664 * Arrange to reschedule if the resulting priority is better
665 * than that of the current process.
666 */
667void
668resetpriority(p)
669	register struct proc *p;
670{
671	register unsigned int newpriority;
672
673	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
674		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
675		newpriority = min(newpriority, MAXPRI);
676		p->p_usrpri = newpriority;
677		if (newpriority < curpriority)
678			need_resched();
679	} else {
680		need_resched();
681	}
682}
683