kern_synch.c revision 12569
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39 * $Id: kern_synch.c,v 1.13 1995/09/09 18:10:04 davidg Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/buf.h>
47#include <sys/signalvar.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <vm/vm.h>
51#ifdef KTRACE
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56
57static void rqinit __P((void *));
58SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
59
60u_char	curpriority;		/* usrpri of curproc */
61int	lbolt;			/* once a second sleep address */
62
63void	endtsleep __P((void *));
64
65/*
66 * Force switch among equal priority processes every 100ms.
67 */
68/* ARGSUSED */
69void
70roundrobin(arg)
71	void *arg;
72{
73
74	need_resched();
75	timeout(roundrobin, NULL, hz / 10);
76}
77
78/*
79 * Constants for digital decay and forget:
80 *	90% of (p_estcpu) usage in 5 * loadav time
81 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
82 *          Note that, as ps(1) mentions, this can let percentages
83 *          total over 100% (I've seen 137.9% for 3 processes).
84 *
85 * Note that hardclock updates p_estcpu and p_cpticks independently.
86 *
87 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
88 * That is, the system wants to compute a value of decay such
89 * that the following for loop:
90 * 	for (i = 0; i < (5 * loadavg); i++)
91 * 		p_estcpu *= decay;
92 * will compute
93 * 	p_estcpu *= 0.1;
94 * for all values of loadavg:
95 *
96 * Mathematically this loop can be expressed by saying:
97 * 	decay ** (5 * loadavg) ~= .1
98 *
99 * The system computes decay as:
100 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
101 *
102 * We wish to prove that the system's computation of decay
103 * will always fulfill the equation:
104 * 	decay ** (5 * loadavg) ~= .1
105 *
106 * If we compute b as:
107 * 	b = 2 * loadavg
108 * then
109 * 	decay = b / (b + 1)
110 *
111 * We now need to prove two things:
112 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
113 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
114 *
115 * Facts:
116 *         For x close to zero, exp(x) =~ 1 + x, since
117 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
118 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
119 *         For x close to zero, ln(1+x) =~ x, since
120 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
121 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
122 *         ln(.1) =~ -2.30
123 *
124 * Proof of (1):
125 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
126 *	solving for factor,
127 *      ln(factor) =~ (-2.30/5*loadav), or
128 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
129 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
130 *
131 * Proof of (2):
132 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
133 *	solving for power,
134 *      power*ln(b/(b+1)) =~ -2.30, or
135 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
136 *
137 * Actual power values for the implemented algorithm are as follows:
138 *      loadav: 1       2       3       4
139 *      power:  5.68    10.32   14.94   19.55
140 */
141
142/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
143#define	loadfactor(loadav)	(2 * (loadav))
144#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
145
146/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
147fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
148
149/*
150 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
151 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
152 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
153 *
154 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
155 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
156 *
157 * If you dont want to bother with the faster/more-accurate formula, you
158 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
159 * (more general) method of calculating the %age of CPU used by a process.
160 */
161#define	CCPU_SHIFT	11
162
163/*
164 * Recompute process priorities, every hz ticks.
165 */
166/* ARGSUSED */
167void
168schedcpu(arg)
169	void *arg;
170{
171	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
172	register struct proc *p;
173	register int s;
174	register unsigned int newcpu;
175
176	wakeup((caddr_t)&lbolt);
177	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
178		/*
179		 * Increment time in/out of memory and sleep time
180		 * (if sleeping).  We ignore overflow; with 16-bit int's
181		 * (remember them?) overflow takes 45 days.
182		 */
183		p->p_swtime++;
184		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
185			p->p_slptime++;
186		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
187		/*
188		 * If the process has slept the entire second,
189		 * stop recalculating its priority until it wakes up.
190		 */
191		if (p->p_slptime > 1)
192			continue;
193		s = splstatclock();	/* prevent state changes */
194		/*
195		 * p_pctcpu is only for ps.
196		 */
197#if	(FSHIFT >= CCPU_SHIFT)
198		p->p_pctcpu += (hz == 100)?
199			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
200                	100 * (((fixpt_t) p->p_cpticks)
201				<< (FSHIFT - CCPU_SHIFT)) / hz;
202#else
203		p->p_pctcpu += ((FSCALE - ccpu) *
204			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
205#endif
206		p->p_cpticks = 0;
207		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
208		p->p_estcpu = min(newcpu, UCHAR_MAX);
209		resetpriority(p);
210		if (p->p_priority >= PUSER) {
211#define	PPQ	(128 / NQS)		/* priorities per queue */
212			if ((p != curproc) &&
213			    p->p_stat == SRUN &&
214			    (p->p_flag & P_INMEM) &&
215			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
216				remrq(p);
217				p->p_priority = p->p_usrpri;
218				setrunqueue(p);
219			} else
220				p->p_priority = p->p_usrpri;
221		}
222		splx(s);
223	}
224	vmmeter();
225	timeout(schedcpu, (void *)0, hz);
226}
227
228/*
229 * Recalculate the priority of a process after it has slept for a while.
230 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
231 * least six times the loadfactor will decay p_estcpu to zero.
232 */
233void
234updatepri(p)
235	register struct proc *p;
236{
237	register unsigned int newcpu = p->p_estcpu;
238	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
239
240	if (p->p_slptime > 5 * loadfac)
241		p->p_estcpu = 0;
242	else {
243		p->p_slptime--;	/* the first time was done in schedcpu */
244		while (newcpu && --p->p_slptime)
245			newcpu = (int) decay_cpu(loadfac, newcpu);
246		p->p_estcpu = min(newcpu, UCHAR_MAX);
247	}
248	resetpriority(p);
249}
250
251/*
252 * We're only looking at 7 bits of the address; everything is
253 * aligned to 4, lots of things are aligned to greater powers
254 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
255 */
256#define TABLESIZE	128
257#define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
258struct slpque {
259	struct proc *sq_head;
260	struct proc **sq_tailp;
261} slpque[TABLESIZE];
262
263/*
264 * During autoconfiguration or after a panic, a sleep will simply
265 * lower the priority briefly to allow interrupts, then return.
266 * The priority to be used (safepri) is machine-dependent, thus this
267 * value is initialized and maintained in the machine-dependent layers.
268 * This priority will typically be 0, or the lowest priority
269 * that is safe for use on the interrupt stack; it can be made
270 * higher to block network software interrupts after panics.
271 */
272int safepri;
273
274/*
275 * General sleep call.  Suspends the current process until a wakeup is
276 * performed on the specified identifier.  The process will then be made
277 * runnable with the specified priority.  Sleeps at most timo/hz seconds
278 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
279 * before and after sleeping, else signals are not checked.  Returns 0 if
280 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
281 * signal needs to be delivered, ERESTART is returned if the current system
282 * call should be restarted if possible, and EINTR is returned if the system
283 * call should be interrupted by the signal (return EINTR).
284 */
285int
286tsleep(ident, priority, wmesg, timo)
287	void *ident;
288	int priority, timo;
289	char *wmesg;
290{
291	register struct proc *p = curproc;
292	register struct slpque *qp;
293	register s;
294	int sig, catch = priority & PCATCH;
295
296#ifdef KTRACE
297	if (KTRPOINT(p, KTR_CSW))
298		ktrcsw(p->p_tracep, 1, 0);
299#endif
300	s = splhigh();
301	if (cold || panicstr) {
302		/*
303		 * After a panic, or during autoconfiguration,
304		 * just give interrupts a chance, then just return;
305		 * don't run any other procs or panic below,
306		 * in case this is the idle process and already asleep.
307		 */
308		splx(safepri);
309		splx(s);
310		return (0);
311	}
312#ifdef DIAGNOSTIC
313	if (ident == NULL || p->p_stat != SRUN || p->p_back)
314		panic("tsleep");
315#endif
316	p->p_wchan = ident;
317	p->p_wmesg = wmesg;
318	p->p_slptime = 0;
319	p->p_priority = priority & PRIMASK;
320	qp = &slpque[LOOKUP(ident)];
321	if (qp->sq_head == 0)
322		qp->sq_head = p;
323	else
324		*qp->sq_tailp = p;
325	*(qp->sq_tailp = &p->p_forw) = 0;
326	if (timo)
327		timeout(endtsleep, (void *)p, timo);
328	/*
329	 * We put ourselves on the sleep queue and start our timeout
330	 * before calling CURSIG, as we could stop there, and a wakeup
331	 * or a SIGCONT (or both) could occur while we were stopped.
332	 * A SIGCONT would cause us to be marked as SSLEEP
333	 * without resuming us, thus we must be ready for sleep
334	 * when CURSIG is called.  If the wakeup happens while we're
335	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
336	 */
337	if (catch) {
338		p->p_flag |= P_SINTR;
339		if ((sig = CURSIG(p))) {
340			if (p->p_wchan)
341				unsleep(p);
342			p->p_stat = SRUN;
343			goto resume;
344		}
345		if (p->p_wchan == 0) {
346			catch = 0;
347			goto resume;
348		}
349	} else
350		sig = 0;
351	p->p_stat = SSLEEP;
352	p->p_stats->p_ru.ru_nvcsw++;
353	mi_switch();
354resume:
355	curpriority = p->p_usrpri;
356	splx(s);
357	p->p_flag &= ~P_SINTR;
358	if (p->p_flag & P_TIMEOUT) {
359		p->p_flag &= ~P_TIMEOUT;
360		if (sig == 0) {
361#ifdef KTRACE
362			if (KTRPOINT(p, KTR_CSW))
363				ktrcsw(p->p_tracep, 0, 0);
364#endif
365			return (EWOULDBLOCK);
366		}
367	} else if (timo)
368		untimeout(endtsleep, (void *)p);
369	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
370#ifdef KTRACE
371		if (KTRPOINT(p, KTR_CSW))
372			ktrcsw(p->p_tracep, 0, 0);
373#endif
374		if (p->p_sigacts->ps_sigintr & sigmask(sig))
375			return (EINTR);
376		return (ERESTART);
377	}
378#ifdef KTRACE
379	if (KTRPOINT(p, KTR_CSW))
380		ktrcsw(p->p_tracep, 0, 0);
381#endif
382	return (0);
383}
384
385/*
386 * Implement timeout for tsleep.
387 * If process hasn't been awakened (wchan non-zero),
388 * set timeout flag and undo the sleep.  If proc
389 * is stopped, just unsleep so it will remain stopped.
390 */
391void
392endtsleep(arg)
393	void *arg;
394{
395	register struct proc *p;
396	int s;
397
398	p = (struct proc *)arg;
399	s = splhigh();
400	if (p->p_wchan) {
401		if (p->p_stat == SSLEEP)
402			setrunnable(p);
403		else
404			unsleep(p);
405		p->p_flag |= P_TIMEOUT;
406	}
407	splx(s);
408}
409
410/*
411 * Short-term, non-interruptable sleep.
412 */
413void
414sleep(ident, priority)
415	void *ident;
416	int priority;
417{
418	register struct proc *p = curproc;
419	register struct slpque *qp;
420	register s;
421
422#ifdef DIAGNOSTIC
423	if (priority > PZERO) {
424		printf("sleep called with priority %d > PZERO, wchan: %p\n",
425		    priority, ident);
426		panic("old sleep");
427	}
428#endif
429	s = splhigh();
430	if (cold || panicstr) {
431		/*
432		 * After a panic, or during autoconfiguration,
433		 * just give interrupts a chance, then just return;
434		 * don't run any other procs or panic below,
435		 * in case this is the idle process and already asleep.
436		 */
437		splx(safepri);
438		splx(s);
439		return;
440	}
441#ifdef DIAGNOSTIC
442	if (ident == NULL || p->p_stat != SRUN || p->p_back)
443		panic("sleep");
444#endif
445	p->p_wchan = ident;
446	p->p_wmesg = NULL;
447	p->p_slptime = 0;
448	p->p_priority = priority;
449	qp = &slpque[LOOKUP(ident)];
450	if (qp->sq_head == 0)
451		qp->sq_head = p;
452	else
453		*qp->sq_tailp = p;
454	*(qp->sq_tailp = &p->p_forw) = 0;
455	p->p_stat = SSLEEP;
456	p->p_stats->p_ru.ru_nvcsw++;
457#ifdef KTRACE
458	if (KTRPOINT(p, KTR_CSW))
459		ktrcsw(p->p_tracep, 1, 0);
460#endif
461	mi_switch();
462#ifdef KTRACE
463	if (KTRPOINT(p, KTR_CSW))
464		ktrcsw(p->p_tracep, 0, 0);
465#endif
466	curpriority = p->p_usrpri;
467	splx(s);
468}
469
470/*
471 * Remove a process from its wait queue
472 */
473void
474unsleep(p)
475	register struct proc *p;
476{
477	register struct slpque *qp;
478	register struct proc **hp;
479	int s;
480
481	s = splhigh();
482	if (p->p_wchan) {
483		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
484		while (*hp != p)
485			hp = &(*hp)->p_forw;
486		*hp = p->p_forw;
487		if (qp->sq_tailp == &p->p_forw)
488			qp->sq_tailp = hp;
489		p->p_wchan = 0;
490	}
491	splx(s);
492}
493
494/*
495 * Make all processes sleeping on the specified identifier runnable.
496 */
497void
498wakeup(ident)
499	register void *ident;
500{
501	register struct slpque *qp;
502	register struct proc *p, **q;
503	int s;
504
505	s = splhigh();
506	qp = &slpque[LOOKUP(ident)];
507restart:
508	for (q = &qp->sq_head; *q; ) {
509		p = *q;
510#ifdef DIAGNOSTIC
511		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
512			panic("wakeup");
513#endif
514		if (p->p_wchan == ident) {
515			p->p_wchan = 0;
516			*q = p->p_forw;
517			if (qp->sq_tailp == &p->p_forw)
518				qp->sq_tailp = q;
519			if (p->p_stat == SSLEEP) {
520				/* OPTIMIZED EXPANSION OF setrunnable(p); */
521				if (p->p_slptime > 1)
522					updatepri(p);
523				p->p_slptime = 0;
524				p->p_stat = SRUN;
525				if (p->p_flag & P_INMEM)
526					setrunqueue(p);
527				/*
528				 * Since curpriority is a user priority,
529				 * p->p_priority is always better than
530				 * curpriority.
531				 */
532				if ((p->p_flag & P_INMEM) == 0)
533					wakeup((caddr_t)&proc0);
534				else
535					need_resched();
536				/* END INLINE EXPANSION */
537				goto restart;
538			}
539		} else
540			q = &p->p_forw;
541	}
542	splx(s);
543}
544
545/*
546 * The machine independent parts of mi_switch().
547 * Must be called at splstatclock() or higher.
548 */
549void
550mi_switch()
551{
552	register struct proc *p = curproc;	/* XXX */
553	register struct rlimit *rlim;
554	register long s, u;
555	struct timeval tv;
556
557	/*
558	 * Compute the amount of time during which the current
559	 * process was running, and add that to its total so far.
560	 */
561	microtime(&tv);
562	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
563	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
564	if (u < 0) {
565		u += 1000000;
566		s--;
567	} else if (u >= 1000000) {
568		u -= 1000000;
569		s++;
570	}
571	p->p_rtime.tv_usec = u;
572	p->p_rtime.tv_sec = s;
573
574	/*
575	 * Check if the process exceeds its cpu resource allocation.
576	 * If over max, kill it.  In any case, if it has run for more
577	 * than 10 minutes, reduce priority to give others a chance.
578	 */
579	if (p->p_stat != SZOMB) {
580		rlim = &p->p_rlimit[RLIMIT_CPU];
581		if (s >= rlim->rlim_cur) {
582			if (s >= rlim->rlim_max)
583				psignal(p, SIGKILL);
584			else {
585				psignal(p, SIGXCPU);
586				if (rlim->rlim_cur < rlim->rlim_max)
587					rlim->rlim_cur += 5;
588			}
589		}
590		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
591			p->p_nice = NZERO + 4;
592			resetpriority(p);
593		}
594	}
595
596	/*
597	 * Pick a new current process and record its start time.
598	 */
599	cnt.v_swtch++;
600	cpu_switch(p);
601	microtime(&runtime);
602}
603
604/*
605 * Initialize the (doubly-linked) run queues
606 * to be empty.
607 */
608/* ARGSUSED*/
609static void
610rqinit(dummy)
611	void *dummy;
612{
613	register int i;
614
615	for (i = 0; i < NQS; i++) {
616		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
617		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
618		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
619	}
620}
621
622/*
623 * Change process state to be runnable,
624 * placing it on the run queue if it is in memory,
625 * and awakening the swapper if it isn't in memory.
626 */
627void
628setrunnable(p)
629	register struct proc *p;
630{
631	register int s;
632
633	s = splhigh();
634	switch (p->p_stat) {
635	case 0:
636	case SRUN:
637	case SZOMB:
638	default:
639		panic("setrunnable");
640	case SSTOP:
641	case SSLEEP:
642		unsleep(p);		/* e.g. when sending signals */
643		break;
644
645	case SIDL:
646		break;
647	}
648	p->p_stat = SRUN;
649	if (p->p_flag & P_INMEM)
650		setrunqueue(p);
651	splx(s);
652	if (p->p_slptime > 1)
653		updatepri(p);
654	p->p_slptime = 0;
655	if ((p->p_flag & P_INMEM) == 0)
656		wakeup((caddr_t)&proc0);
657	else if (p->p_priority < curpriority)
658		need_resched();
659}
660
661/*
662 * Compute the priority of a process when running in user mode.
663 * Arrange to reschedule if the resulting priority is better
664 * than that of the current process.
665 */
666void
667resetpriority(p)
668	register struct proc *p;
669{
670	register unsigned int newpriority;
671
672	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
673		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
674		newpriority = min(newpriority, MAXPRI);
675		p->p_usrpri = newpriority;
676		if (newpriority < curpriority)
677			need_resched();
678	} else {
679		need_resched();
680	}
681}
682