kern_synch.c revision 124944
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 124944 2004-01-25 03:54:52Z jeff $");
43
44#include "opt_ddb.h"
45#include "opt_ktrace.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/condvar.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/resourcevar.h>
56#include <sys/sched.h>
57#include <sys/signalvar.h>
58#include <sys/smp.h>
59#include <sys/sx.h>
60#include <sys/sysctl.h>
61#include <sys/sysproto.h>
62#include <sys/vmmeter.h>
63#ifdef DDB
64#include <ddb/ddb.h>
65#endif
66#ifdef KTRACE
67#include <sys/uio.h>
68#include <sys/ktrace.h>
69#endif
70
71#include <machine/cpu.h>
72
73static void sched_setup(void *dummy);
74SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75
76int	hogticks;
77int	lbolt;
78
79static struct callout loadav_callout;
80static struct callout lbolt_callout;
81
82struct loadavg averunnable =
83	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
84/*
85 * Constants for averages over 1, 5, and 15 minutes
86 * when sampling at 5 second intervals.
87 */
88static fixpt_t cexp[3] = {
89	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
90	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
91	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
92};
93
94/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
95static int      fscale __unused = FSCALE;
96SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
97
98static void	endtsleep(void *);
99static void	loadav(void *arg);
100static void	lboltcb(void *arg);
101
102/*
103 * We're only looking at 7 bits of the address; everything is
104 * aligned to 4, lots of things are aligned to greater powers
105 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
106 */
107#define TABLESIZE	128
108static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
109#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
110
111void
112sleepinit(void)
113{
114	int i;
115
116	hogticks = (hz / 10) * 2;	/* Default only. */
117	for (i = 0; i < TABLESIZE; i++)
118		TAILQ_INIT(&slpque[i]);
119}
120
121/*
122 * General sleep call.  Suspends the current process until a wakeup is
123 * performed on the specified identifier.  The process will then be made
124 * runnable with the specified priority.  Sleeps at most timo/hz seconds
125 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
126 * before and after sleeping, else signals are not checked.  Returns 0 if
127 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
128 * signal needs to be delivered, ERESTART is returned if the current system
129 * call should be restarted if possible, and EINTR is returned if the system
130 * call should be interrupted by the signal (return EINTR).
131 *
132 * The mutex argument is exited before the caller is suspended, and
133 * entered before msleep returns.  If priority includes the PDROP
134 * flag the mutex is not entered before returning.
135 */
136
137int
138msleep(ident, mtx, priority, wmesg, timo)
139	void *ident;
140	struct mtx *mtx;
141	int priority, timo;
142	const char *wmesg;
143{
144	struct thread *td = curthread;
145	struct proc *p = td->td_proc;
146	int sig, catch = priority & PCATCH;
147	int rval = 0;
148	WITNESS_SAVE_DECL(mtx);
149
150#ifdef KTRACE
151	if (KTRPOINT(td, KTR_CSW))
152		ktrcsw(1, 0);
153#endif
154	/* XXX: mtx == NULL ?? */
155	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
156	    "Sleeping on \"%s\"", wmesg);
157	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
158	    ("sleeping without a mutex"));
159	/*
160	 * If we are capable of async syscalls and there isn't already
161	 * another one ready to return, start a new thread
162	 * and queue it as ready to run. Note that there is danger here
163	 * because we need to make sure that we don't sleep allocating
164	 * the thread (recursion here might be bad).
165	 */
166	mtx_lock_spin(&sched_lock);
167	if (p->p_flag & P_SA || p->p_numthreads > 1) {
168		/*
169		 * Just don't bother if we are exiting
170		 * and not the exiting thread or thread was marked as
171		 * interrupted.
172		 */
173		if (catch) {
174			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
175				mtx_unlock_spin(&sched_lock);
176				return (EINTR);
177			}
178			if (td->td_flags & TDF_INTERRUPT) {
179				mtx_unlock_spin(&sched_lock);
180				return (td->td_intrval);
181			}
182		}
183	}
184	if (cold ) {
185		/*
186		 * During autoconfiguration, just return;
187		 * don't run any other procs or panic below,
188		 * in case this is the idle process and already asleep.
189		 * XXX: this used to do "s = splhigh(); splx(safepri);
190		 * splx(s);" to give interrupts a chance, but there is
191		 * no way to give interrupts a chance now.
192		 */
193		if (mtx != NULL && priority & PDROP)
194			mtx_unlock(mtx);
195		mtx_unlock_spin(&sched_lock);
196		return (0);
197	}
198	DROP_GIANT();
199	if (mtx != NULL) {
200		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
201		WITNESS_SAVE(&mtx->mtx_object, mtx);
202		mtx_unlock(mtx);
203		if (priority & PDROP)
204			mtx = NULL;
205	}
206	KASSERT(p != NULL, ("msleep1"));
207	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
208
209	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
210	    td, p->p_pid, p->p_comm, wmesg, ident);
211
212	td->td_wchan = ident;
213	td->td_wmesg = wmesg;
214	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
215	TD_SET_ON_SLEEPQ(td);
216	if (timo)
217		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
218	/*
219	 * We put ourselves on the sleep queue and start our timeout
220	 * before calling thread_suspend_check, as we could stop there, and
221	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
222	 * without resuming us, thus we must be ready for sleep
223	 * when cursig is called.  If the wakeup happens while we're
224	 * stopped, td->td_wchan will be 0 upon return from cursig.
225	 */
226	if (catch) {
227		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
228		    p->p_pid, p->p_comm);
229		td->td_flags |= TDF_SINTR;
230		mtx_unlock_spin(&sched_lock);
231		PROC_LOCK(p);
232		mtx_lock(&p->p_sigacts->ps_mtx);
233		sig = cursig(td);
234		mtx_unlock(&p->p_sigacts->ps_mtx);
235		if (sig == 0 && thread_suspend_check(1))
236			sig = SIGSTOP;
237		mtx_lock_spin(&sched_lock);
238		PROC_UNLOCK(p);
239		if (sig != 0) {
240			if (TD_ON_SLEEPQ(td))
241				unsleep(td);
242		} else if (!TD_ON_SLEEPQ(td))
243			catch = 0;
244	} else
245		sig = 0;
246
247	/*
248	 * Let the scheduler know we're about to voluntarily go to sleep.
249	 */
250	sched_sleep(td, priority & PRIMASK);
251
252	if (TD_ON_SLEEPQ(td)) {
253		TD_SET_SLEEPING(td);
254		mi_switch(SW_VOL);
255	}
256	/*
257	 * We're awake from voluntary sleep.
258	 */
259	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
260	    p->p_comm);
261	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
262	td->td_flags &= ~TDF_SINTR;
263	if (td->td_flags & TDF_TIMEOUT) {
264		td->td_flags &= ~TDF_TIMEOUT;
265		if (sig == 0)
266			rval = EWOULDBLOCK;
267	} else if (td->td_flags & TDF_TIMOFAIL) {
268		td->td_flags &= ~TDF_TIMOFAIL;
269	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
270		/*
271		 * This isn't supposed to be pretty.  If we are here, then
272		 * the endtsleep() callout is currently executing on another
273		 * CPU and is either spinning on the sched_lock or will be
274		 * soon.  If we don't synchronize here, there is a chance
275		 * that this process may msleep() again before the callout
276		 * has a chance to run and the callout may end up waking up
277		 * the wrong msleep().  Yuck.
278		 */
279		TD_SET_SLEEPING(td);
280		mi_switch(SW_INVOL);
281		td->td_flags &= ~TDF_TIMOFAIL;
282	}
283	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
284	    (rval == 0)) {
285		rval = td->td_intrval;
286	}
287	mtx_unlock_spin(&sched_lock);
288	if (rval == 0 && catch) {
289		PROC_LOCK(p);
290		/* XXX: shouldn't we always be calling cursig()? */
291		mtx_lock(&p->p_sigacts->ps_mtx);
292		if (sig != 0 || (sig = cursig(td))) {
293			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
294				rval = EINTR;
295			else
296				rval = ERESTART;
297		}
298		mtx_unlock(&p->p_sigacts->ps_mtx);
299		PROC_UNLOCK(p);
300	}
301#ifdef KTRACE
302	if (KTRPOINT(td, KTR_CSW))
303		ktrcsw(0, 0);
304#endif
305	PICKUP_GIANT();
306	if (mtx != NULL) {
307		mtx_lock(mtx);
308		WITNESS_RESTORE(&mtx->mtx_object, mtx);
309	}
310	return (rval);
311}
312
313/*
314 * Implement timeout for msleep().
315 *
316 * If process hasn't been awakened (wchan non-zero),
317 * set timeout flag and undo the sleep.  If proc
318 * is stopped, just unsleep so it will remain stopped.
319 * MP-safe, called without the Giant mutex.
320 */
321static void
322endtsleep(arg)
323	void *arg;
324{
325	register struct thread *td;
326
327	td = (struct thread *)arg;
328	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
329	    td, td->td_proc->p_pid, td->td_proc->p_comm);
330	mtx_lock_spin(&sched_lock);
331	/*
332	 * This is the other half of the synchronization with msleep()
333	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
334	 * race and just need to put the process back on the runqueue.
335	 */
336	if (TD_ON_SLEEPQ(td)) {
337		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
338		TD_CLR_ON_SLEEPQ(td);
339		td->td_flags |= TDF_TIMEOUT;
340		td->td_wmesg = NULL;
341	} else
342		td->td_flags |= TDF_TIMOFAIL;
343	TD_CLR_SLEEPING(td);
344	setrunnable(td);
345	mtx_unlock_spin(&sched_lock);
346}
347
348/*
349 * Abort a thread, as if an interrupt had occured.  Only abort
350 * interruptable waits (unfortunatly it isn't only safe to abort others).
351 * This is about identical to cv_abort().
352 * Think about merging them?
353 * Also, whatever the signal code does...
354 */
355void
356abortsleep(struct thread *td)
357{
358
359	mtx_assert(&sched_lock, MA_OWNED);
360	/*
361	 * If the TDF_TIMEOUT flag is set, just leave. A
362	 * timeout is scheduled anyhow.
363	 */
364	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
365		if (TD_ON_SLEEPQ(td)) {
366			unsleep(td);
367			TD_CLR_SLEEPING(td);
368			setrunnable(td);
369		}
370	}
371}
372
373/*
374 * Remove a process from its wait queue
375 */
376void
377unsleep(struct thread *td)
378{
379
380	mtx_lock_spin(&sched_lock);
381	if (TD_ON_SLEEPQ(td)) {
382		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
383		TD_CLR_ON_SLEEPQ(td);
384		td->td_wmesg = NULL;
385	}
386	mtx_unlock_spin(&sched_lock);
387}
388
389/*
390 * Make all processes sleeping on the specified identifier runnable.
391 */
392void
393wakeup(ident)
394	register void *ident;
395{
396	register struct slpquehead *qp;
397	register struct thread *td;
398	struct thread *ntd;
399	struct proc *p;
400
401	mtx_lock_spin(&sched_lock);
402	qp = &slpque[LOOKUP(ident)];
403restart:
404	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
405		ntd = TAILQ_NEXT(td, td_slpq);
406		if (td->td_wchan == ident) {
407			unsleep(td);
408			TD_CLR_SLEEPING(td);
409			setrunnable(td);
410			p = td->td_proc;
411			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
412			    td, p->p_pid, p->p_comm);
413			goto restart;
414		}
415	}
416	mtx_unlock_spin(&sched_lock);
417}
418
419/*
420 * Make a process sleeping on the specified identifier runnable.
421 * May wake more than one process if a target process is currently
422 * swapped out.
423 */
424void
425wakeup_one(ident)
426	register void *ident;
427{
428	register struct proc *p;
429	register struct slpquehead *qp;
430	register struct thread *td;
431	struct thread *ntd;
432
433	mtx_lock_spin(&sched_lock);
434	qp = &slpque[LOOKUP(ident)];
435	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
436		ntd = TAILQ_NEXT(td, td_slpq);
437		if (td->td_wchan == ident) {
438			unsleep(td);
439			TD_CLR_SLEEPING(td);
440			setrunnable(td);
441			p = td->td_proc;
442			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
443			    td, p->p_pid, p->p_comm);
444			break;
445		}
446	}
447	mtx_unlock_spin(&sched_lock);
448}
449
450/*
451 * The machine independent parts of mi_switch().
452 */
453void
454mi_switch(int flags)
455{
456	struct bintime new_switchtime;
457	struct thread *td;
458	struct proc *p;
459
460	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
461	td = curthread;			/* XXX */
462	p = td->td_proc;		/* XXX */
463	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
464#ifdef INVARIANTS
465	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
466		mtx_assert(&Giant, MA_NOTOWNED);
467#endif
468	KASSERT(td->td_critnest == 1,
469	    ("mi_switch: switch in a critical section"));
470	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
471	    ("mi_switch: switch must be voluntary or involuntary"));
472
473	if (flags & SW_VOL)
474		p->p_stats->p_ru.ru_nvcsw++;
475	else
476		p->p_stats->p_ru.ru_nivcsw++;
477	/*
478	 * Compute the amount of time during which the current
479	 * process was running, and add that to its total so far.
480	 */
481	binuptime(&new_switchtime);
482	bintime_add(&p->p_runtime, &new_switchtime);
483	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
484
485	td->td_generation++;	/* bump preempt-detect counter */
486
487#ifdef DDB
488	/*
489	 * Don't perform context switches from the debugger.
490	 */
491	if (db_active) {
492		mtx_unlock_spin(&sched_lock);
493		db_print_backtrace();
494		db_error("Context switches not allowed in the debugger");
495	}
496#endif
497
498	/*
499	 * Check if the process exceeds its cpu resource allocation.  If
500	 * over max, arrange to kill the process in ast().
501	 */
502	if (p->p_cpulimit != RLIM_INFINITY &&
503	    p->p_runtime.sec > p->p_cpulimit) {
504		p->p_sflag |= PS_XCPU;
505		td->td_flags |= TDF_ASTPENDING;
506	}
507
508	/*
509	 * Finish up stats for outgoing thread.
510	 */
511	cnt.v_swtch++;
512	PCPU_SET(switchtime, new_switchtime);
513	PCPU_SET(switchticks, ticks);
514	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
515	    p->p_comm);
516	if (td->td_proc->p_flag & P_SA)
517		thread_switchout(td);
518	sched_switch(td);
519
520	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
521	    p->p_comm);
522
523	/*
524	 * If the last thread was exiting, finish cleaning it up.
525	 */
526	if ((td = PCPU_GET(deadthread))) {
527		PCPU_SET(deadthread, NULL);
528		thread_stash(td);
529	}
530}
531
532/*
533 * Change process state to be runnable,
534 * placing it on the run queue if it is in memory,
535 * and awakening the swapper if it isn't in memory.
536 */
537void
538setrunnable(struct thread *td)
539{
540	struct proc *p;
541
542	p = td->td_proc;
543	mtx_assert(&sched_lock, MA_OWNED);
544	switch (p->p_state) {
545	case PRS_ZOMBIE:
546		panic("setrunnable(1)");
547	default:
548		break;
549	}
550	switch (td->td_state) {
551	case TDS_RUNNING:
552	case TDS_RUNQ:
553		return;
554	case TDS_INHIBITED:
555		/*
556		 * If we are only inhibited because we are swapped out
557		 * then arange to swap in this process. Otherwise just return.
558		 */
559		if (td->td_inhibitors != TDI_SWAPPED)
560			return;
561		/* XXX: intentional fall-through ? */
562	case TDS_CAN_RUN:
563		break;
564	default:
565		printf("state is 0x%x", td->td_state);
566		panic("setrunnable(2)");
567	}
568	if ((p->p_sflag & PS_INMEM) == 0) {
569		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
570			p->p_sflag |= PS_SWAPINREQ;
571			wakeup(&proc0);
572		}
573	} else
574		sched_wakeup(td);
575}
576
577/*
578 * Compute a tenex style load average of a quantity on
579 * 1, 5 and 15 minute intervals.
580 * XXXKSE   Needs complete rewrite when correct info is available.
581 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
582 */
583static void
584loadav(void *arg)
585{
586	int i, nrun;
587	struct loadavg *avg;
588	struct proc *p;
589	struct thread *td;
590
591	avg = &averunnable;
592	sx_slock(&allproc_lock);
593	nrun = 0;
594	FOREACH_PROC_IN_SYSTEM(p) {
595		FOREACH_THREAD_IN_PROC(p, td) {
596			switch (td->td_state) {
597			case TDS_RUNQ:
598			case TDS_RUNNING:
599				if ((p->p_flag & P_NOLOAD) != 0)
600					goto nextproc;
601				nrun++; /* XXXKSE */
602			default:
603				break;
604			}
605nextproc:
606			continue;
607		}
608	}
609	sx_sunlock(&allproc_lock);
610	for (i = 0; i < 3; i++)
611		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
612		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
613
614	/*
615	 * Schedule the next update to occur after 5 seconds, but add a
616	 * random variation to avoid synchronisation with processes that
617	 * run at regular intervals.
618	 */
619	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
620	    loadav, NULL);
621}
622
623static void
624lboltcb(void *arg)
625{
626	wakeup(&lbolt);
627	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
628}
629
630/* ARGSUSED */
631static void
632sched_setup(dummy)
633	void *dummy;
634{
635	callout_init(&loadav_callout, 0);
636	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
637
638	/* Kick off timeout driven events by calling first time. */
639	loadav(NULL);
640	lboltcb(NULL);
641}
642
643/*
644 * General purpose yield system call
645 */
646int
647yield(struct thread *td, struct yield_args *uap)
648{
649	struct ksegrp *kg;
650
651	kg = td->td_ksegrp;
652	mtx_assert(&Giant, MA_NOTOWNED);
653	mtx_lock_spin(&sched_lock);
654	sched_prio(td, PRI_MAX_TIMESHARE);
655	mi_switch(SW_VOL);
656	mtx_unlock_spin(&sched_lock);
657	td->td_retval[0] = 0;
658	return (0);
659}
660