kern_synch.c revision 117372
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 117372 2003-07-10 01:02:59Z peter $");
43
44#include "opt_ddb.h"
45#include "opt_ktrace.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/condvar.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/resourcevar.h>
56#include <sys/sched.h>
57#include <sys/signalvar.h>
58#include <sys/smp.h>
59#include <sys/sx.h>
60#include <sys/sysctl.h>
61#include <sys/sysproto.h>
62#include <sys/vmmeter.h>
63#ifdef DDB
64#include <ddb/ddb.h>
65#endif
66#ifdef KTRACE
67#include <sys/uio.h>
68#include <sys/ktrace.h>
69#endif
70
71#include <machine/cpu.h>
72
73static void sched_setup(void *dummy);
74SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75
76int	hogticks;
77int	lbolt;
78
79static struct callout loadav_callout;
80static struct callout lbolt_callout;
81
82struct loadavg averunnable =
83	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
84/*
85 * Constants for averages over 1, 5, and 15 minutes
86 * when sampling at 5 second intervals.
87 */
88static fixpt_t cexp[3] = {
89	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
90	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
91	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
92};
93
94/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
95static int      fscale __unused = FSCALE;
96SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
97
98static void	endtsleep(void *);
99static void	loadav(void *arg);
100static void	lboltcb(void *arg);
101
102/*
103 * We're only looking at 7 bits of the address; everything is
104 * aligned to 4, lots of things are aligned to greater powers
105 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
106 */
107#define TABLESIZE	128
108static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
109#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
110
111void
112sleepinit(void)
113{
114	int i;
115
116	hogticks = (hz / 10) * 2;	/* Default only. */
117	for (i = 0; i < TABLESIZE; i++)
118		TAILQ_INIT(&slpque[i]);
119}
120
121/*
122 * General sleep call.  Suspends the current process until a wakeup is
123 * performed on the specified identifier.  The process will then be made
124 * runnable with the specified priority.  Sleeps at most timo/hz seconds
125 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
126 * before and after sleeping, else signals are not checked.  Returns 0 if
127 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
128 * signal needs to be delivered, ERESTART is returned if the current system
129 * call should be restarted if possible, and EINTR is returned if the system
130 * call should be interrupted by the signal (return EINTR).
131 *
132 * The mutex argument is exited before the caller is suspended, and
133 * entered before msleep returns.  If priority includes the PDROP
134 * flag the mutex is not entered before returning.
135 */
136
137int
138msleep(ident, mtx, priority, wmesg, timo)
139	void *ident;
140	struct mtx *mtx;
141	int priority, timo;
142	const char *wmesg;
143{
144	struct thread *td = curthread;
145	struct proc *p = td->td_proc;
146	int sig, catch = priority & PCATCH;
147	int rval = 0;
148	WITNESS_SAVE_DECL(mtx);
149
150#ifdef KTRACE
151	if (KTRPOINT(td, KTR_CSW))
152		ktrcsw(1, 0);
153#endif
154	/* XXX: mtx == NULL ?? */
155	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
156	    "Sleeping on \"%s\"", wmesg);
157	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
158	    ("sleeping without a mutex"));
159	/*
160	 * If we are capable of async syscalls and there isn't already
161	 * another one ready to return, start a new thread
162	 * and queue it as ready to run. Note that there is danger here
163	 * because we need to make sure that we don't sleep allocating
164	 * the thread (recursion here might be bad).
165	 */
166	mtx_lock_spin(&sched_lock);
167	if (p->p_flag & P_SA || p->p_numthreads > 1) {
168		/*
169		 * Just don't bother if we are exiting
170		 * and not the exiting thread or thread was marked as
171		 * interrupted.
172		 */
173		if (catch) {
174			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
175				mtx_unlock_spin(&sched_lock);
176				return (EINTR);
177			}
178			if (td->td_flags & TDF_INTERRUPT) {
179				mtx_unlock_spin(&sched_lock);
180				return (td->td_intrval);
181			}
182		}
183	}
184	if (cold ) {
185		/*
186		 * During autoconfiguration, just give interrupts
187		 * a chance, then just return.
188		 * Don't run any other procs or panic below,
189		 * in case this is the idle process and already asleep.
190		 */
191		if (mtx != NULL && priority & PDROP)
192			mtx_unlock(mtx);
193		mtx_unlock_spin(&sched_lock);
194		return (0);
195	}
196
197	DROP_GIANT();
198
199	if (mtx != NULL) {
200		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
201		WITNESS_SAVE(&mtx->mtx_object, mtx);
202		mtx_unlock(mtx);
203		if (priority & PDROP)
204			mtx = NULL;
205	}
206
207	KASSERT(p != NULL, ("msleep1"));
208	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
209
210	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
211	    td, p->p_pid, p->p_comm, wmesg, ident);
212
213	td->td_wchan = ident;
214	td->td_wmesg = wmesg;
215	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
216	TD_SET_ON_SLEEPQ(td);
217	if (timo)
218		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
219	/*
220	 * We put ourselves on the sleep queue and start our timeout
221	 * before calling thread_suspend_check, as we could stop there, and
222	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
223	 * without resuming us, thus we must be ready for sleep
224	 * when cursig is called.  If the wakeup happens while we're
225	 * stopped, td->td_wchan will be 0 upon return from cursig.
226	 */
227	if (catch) {
228		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
229		    p->p_pid, p->p_comm);
230		td->td_flags |= TDF_SINTR;
231		mtx_unlock_spin(&sched_lock);
232		PROC_LOCK(p);
233		mtx_lock(&p->p_sigacts->ps_mtx);
234		sig = cursig(td);
235		mtx_unlock(&p->p_sigacts->ps_mtx);
236		if (sig == 0 && thread_suspend_check(1))
237			sig = SIGSTOP;
238		mtx_lock_spin(&sched_lock);
239		PROC_UNLOCK(p);
240		if (sig != 0) {
241			if (TD_ON_SLEEPQ(td))
242				unsleep(td);
243		} else if (!TD_ON_SLEEPQ(td))
244			catch = 0;
245	} else
246		sig = 0;
247
248	/*
249	 * Let the scheduler know we're about to voluntarily go to sleep.
250	 */
251	sched_sleep(td, priority & PRIMASK);
252
253	if (TD_ON_SLEEPQ(td)) {
254		p->p_stats->p_ru.ru_nvcsw++;
255		TD_SET_SLEEPING(td);
256		mi_switch();
257	}
258	/*
259	 * We're awake from voluntary sleep.
260	 */
261	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
262	    p->p_comm);
263	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
264	td->td_flags &= ~TDF_SINTR;
265	if (td->td_flags & TDF_TIMEOUT) {
266		td->td_flags &= ~TDF_TIMEOUT;
267		if (sig == 0)
268			rval = EWOULDBLOCK;
269	} else if (td->td_flags & TDF_TIMOFAIL) {
270		td->td_flags &= ~TDF_TIMOFAIL;
271	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
272		/*
273		 * This isn't supposed to be pretty.  If we are here, then
274		 * the endtsleep() callout is currently executing on another
275		 * CPU and is either spinning on the sched_lock or will be
276		 * soon.  If we don't synchronize here, there is a chance
277		 * that this process may msleep() again before the callout
278		 * has a chance to run and the callout may end up waking up
279		 * the wrong msleep().  Yuck.
280		 */
281		TD_SET_SLEEPING(td);
282		p->p_stats->p_ru.ru_nivcsw++;
283		mi_switch();
284		td->td_flags &= ~TDF_TIMOFAIL;
285	}
286	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
287	    (rval == 0)) {
288		rval = td->td_intrval;
289	}
290	mtx_unlock_spin(&sched_lock);
291
292	if (rval == 0 && catch) {
293		PROC_LOCK(p);
294		/* XXX: shouldn't we always be calling cursig() */
295		mtx_lock(&p->p_sigacts->ps_mtx);
296		if (sig != 0 || (sig = cursig(td))) {
297			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
298				rval = EINTR;
299			else
300				rval = ERESTART;
301		}
302		mtx_unlock(&p->p_sigacts->ps_mtx);
303		PROC_UNLOCK(p);
304	}
305#ifdef KTRACE
306	if (KTRPOINT(td, KTR_CSW))
307		ktrcsw(0, 0);
308#endif
309	PICKUP_GIANT();
310	if (mtx != NULL) {
311		mtx_lock(mtx);
312		WITNESS_RESTORE(&mtx->mtx_object, mtx);
313	}
314	return (rval);
315}
316
317/*
318 * Implement timeout for msleep()
319 *
320 * If process hasn't been awakened (wchan non-zero),
321 * set timeout flag and undo the sleep.  If proc
322 * is stopped, just unsleep so it will remain stopped.
323 * MP-safe, called without the Giant mutex.
324 */
325static void
326endtsleep(arg)
327	void *arg;
328{
329	register struct thread *td = arg;
330
331	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
332	    td, td->td_proc->p_pid, td->td_proc->p_comm);
333	mtx_lock_spin(&sched_lock);
334	/*
335	 * This is the other half of the synchronization with msleep()
336	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
337	 * race and just need to put the process back on the runqueue.
338	 */
339	if (TD_ON_SLEEPQ(td)) {
340		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
341		TD_CLR_ON_SLEEPQ(td);
342		td->td_flags |= TDF_TIMEOUT;
343		td->td_wmesg = NULL;
344	} else {
345		td->td_flags |= TDF_TIMOFAIL;
346	}
347	TD_CLR_SLEEPING(td);
348	setrunnable(td);
349	mtx_unlock_spin(&sched_lock);
350}
351
352/*
353 * Abort a thread, as if an interrupt had occured.  Only abort
354 * interruptable waits (unfortunatly it isn't only safe to abort others).
355 * This is about identical to cv_abort().
356 * Think about merging them?
357 * Also, whatever the signal code does...
358 */
359void
360abortsleep(struct thread *td)
361{
362
363	mtx_assert(&sched_lock, MA_OWNED);
364	/*
365	 * If the TDF_TIMEOUT flag is set, just leave. A
366	 * timeout is scheduled anyhow.
367	 */
368	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
369		if (TD_ON_SLEEPQ(td)) {
370			unsleep(td);
371			TD_CLR_SLEEPING(td);
372			setrunnable(td);
373		}
374	}
375}
376
377/*
378 * Remove a process from its wait queue
379 */
380void
381unsleep(struct thread *td)
382{
383
384	mtx_lock_spin(&sched_lock);
385	if (TD_ON_SLEEPQ(td)) {
386		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
387		TD_CLR_ON_SLEEPQ(td);
388		td->td_wmesg = NULL;
389	}
390	mtx_unlock_spin(&sched_lock);
391}
392
393/*
394 * Make all processes sleeping on the specified identifier runnable.
395 */
396void
397wakeup(ident)
398	register void *ident;
399{
400	register struct slpquehead *qp;
401	register struct thread *td;
402	struct thread *ntd;
403	struct proc *p;
404
405	mtx_lock_spin(&sched_lock);
406	qp = &slpque[LOOKUP(ident)];
407restart:
408	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
409		ntd = TAILQ_NEXT(td, td_slpq);
410		if (td->td_wchan == ident) {
411			unsleep(td);
412			TD_CLR_SLEEPING(td);
413			setrunnable(td);
414			p = td->td_proc;
415			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
416			    td, p->p_pid, p->p_comm);
417			goto restart;
418		}
419	}
420	mtx_unlock_spin(&sched_lock);
421}
422
423/*
424 * Make a process sleeping on the specified identifier runnable.
425 * May wake more than one process if a target process is currently
426 * swapped out.
427 */
428void
429wakeup_one(ident)
430	register void *ident;
431{
432	register struct slpquehead *qp;
433	register struct thread *td;
434	register struct proc *p;
435	struct thread *ntd;
436
437	mtx_lock_spin(&sched_lock);
438	qp = &slpque[LOOKUP(ident)];
439	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
440		ntd = TAILQ_NEXT(td, td_slpq);
441		if (td->td_wchan == ident) {
442			unsleep(td);
443			TD_CLR_SLEEPING(td);
444			setrunnable(td);
445			p = td->td_proc;
446			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
447			    td, p->p_pid, p->p_comm);
448			break;
449		}
450	}
451	mtx_unlock_spin(&sched_lock);
452}
453
454/*
455 * The machine independent parts of mi_switch().
456 */
457void
458mi_switch(void)
459{
460	struct bintime new_switchtime;
461	struct thread *td;
462#if !defined(__alpha__) && !defined(__powerpc__)
463	struct thread *newtd;
464#endif
465	struct proc *p;
466	u_int sched_nest;
467
468	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
469	td = curthread;			/* XXX */
470	p = td->td_proc;		/* XXX */
471	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
472#ifdef INVARIANTS
473	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
474		mtx_assert(&Giant, MA_NOTOWNED);
475#endif
476	KASSERT(td->td_critnest == 1,
477	    ("mi_switch: switch in a critical section"));
478
479	/*
480	 * Compute the amount of time during which the current
481	 * process was running, and add that to its total so far.
482	 */
483	binuptime(&new_switchtime);
484	bintime_add(&p->p_runtime, &new_switchtime);
485	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
486
487#ifdef DDB
488	/*
489	 * Don't perform context switches from the debugger.
490	 */
491	if (db_active) {
492		mtx_unlock_spin(&sched_lock);
493		db_print_backtrace();
494		db_error("Context switches not allowed in the debugger.");
495	}
496#endif
497
498	/*
499	 * Check if the process exceeds its cpu resource allocation.  If
500	 * over max, arrange to kill the process in ast().
501	 */
502	if (p->p_cpulimit != RLIM_INFINITY &&
503	    p->p_runtime.sec > p->p_cpulimit) {
504		p->p_sflag |= PS_XCPU;
505		td->td_flags |= TDF_ASTPENDING;
506	}
507
508	/*
509	 * Finish up stats for outgoing thread.
510	 */
511	cnt.v_swtch++;
512	PCPU_SET(switchtime, new_switchtime);
513	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
514	    p->p_comm);
515	sched_nest = sched_lock.mtx_recurse;
516	if (td->td_proc->p_flag & P_SA)
517		thread_switchout(td);
518	sched_switchout(td);
519
520#if !defined(__alpha__) && !defined(__powerpc__)
521	newtd = choosethread();
522	if (td != newtd)
523		cpu_switch(td, newtd);	/* SHAZAM!! */
524#else
525	cpu_switch();		/* SHAZAM!!*/
526#endif
527
528	sched_lock.mtx_recurse = sched_nest;
529	sched_lock.mtx_lock = (uintptr_t)td;
530	sched_switchin(td);
531
532	/*
533	 * Start setting up stats etc. for the incoming thread.
534	 * Similar code in fork_exit() is returned to by cpu_switch()
535	 * in the case of a new thread/process.
536	 */
537	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
538	    p->p_comm);
539	if (PCPU_GET(switchtime.sec) == 0)
540		binuptime(PCPU_PTR(switchtime));
541	PCPU_SET(switchticks, ticks);
542
543	/*
544	 * Call the switchin function while still holding the scheduler lock
545	 * (used by the idlezero code and the general page-zeroing code)
546	 */
547	if (td->td_switchin)
548		td->td_switchin();
549
550	/*
551	 * If the last thread was exiting, finish cleaning it up.
552	 */
553	if ((td = PCPU_GET(deadthread))) {
554		PCPU_SET(deadthread, NULL);
555		thread_stash(td);
556	}
557}
558
559/*
560 * Change process state to be runnable,
561 * placing it on the run queue if it is in memory,
562 * and awakening the swapper if it isn't in memory.
563 */
564void
565setrunnable(struct thread *td)
566{
567	struct proc *p = td->td_proc;
568
569	mtx_assert(&sched_lock, MA_OWNED);
570	switch (p->p_state) {
571	case PRS_ZOMBIE:
572		panic("setrunnable(1)");
573	default:
574		break;
575	}
576	switch (td->td_state) {
577	case TDS_RUNNING:
578	case TDS_RUNQ:
579		return;
580	case TDS_INHIBITED:
581		/*
582		 * If we are only inhibited because we are swapped out
583		 * then arange to swap in this process. Otherwise just return.
584		 */
585		if (td->td_inhibitors != TDI_SWAPPED)
586			return;
587		/* XXX: intentional fall-through ? */
588	case TDS_CAN_RUN:
589		break;
590	default:
591		printf("state is 0x%x", td->td_state);
592		panic("setrunnable(2)");
593	}
594	if ((p->p_sflag & PS_INMEM) == 0) {
595		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
596			p->p_sflag |= PS_SWAPINREQ;
597			wakeup(&proc0);
598		}
599	} else
600		sched_wakeup(td);
601}
602
603/*
604 * Compute a tenex style load average of a quantity on
605 * 1, 5 and 15 minute intervals.
606 * XXXKSE   Needs complete rewrite when correct info is available.
607 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
608 */
609static void
610loadav(void *arg)
611{
612	int i, nrun;
613	struct loadavg *avg;
614	struct proc *p;
615	struct thread *td;
616
617	avg = &averunnable;
618	sx_slock(&allproc_lock);
619	nrun = 0;
620	FOREACH_PROC_IN_SYSTEM(p) {
621		FOREACH_THREAD_IN_PROC(p, td) {
622			switch (td->td_state) {
623			case TDS_RUNQ:
624			case TDS_RUNNING:
625				if ((p->p_flag & P_NOLOAD) != 0)
626					goto nextproc;
627				nrun++; /* XXXKSE */
628			default:
629				break;
630			}
631nextproc:
632			continue;
633		}
634	}
635	sx_sunlock(&allproc_lock);
636	for (i = 0; i < 3; i++)
637		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
638		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
639
640	/*
641	 * Schedule the next update to occur after 5 seconds, but add a
642	 * random variation to avoid synchronisation with processes that
643	 * run at regular intervals.
644	 */
645	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
646	    loadav, NULL);
647}
648
649static void
650lboltcb(void *arg)
651{
652	wakeup(&lbolt);
653	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
654}
655
656/* ARGSUSED */
657static void
658sched_setup(dummy)
659	void *dummy;
660{
661	callout_init(&loadav_callout, 0);
662	callout_init(&lbolt_callout, 1);
663
664	/* Kick off timeout driven events by calling first time. */
665	loadav(NULL);
666	lboltcb(NULL);
667}
668
669/*
670 * General purpose yield system call
671 */
672int
673yield(struct thread *td, struct yield_args *uap)
674{
675	struct ksegrp *kg = td->td_ksegrp;
676
677	mtx_assert(&Giant, MA_NOTOWNED);
678	mtx_lock_spin(&sched_lock);
679	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
680	sched_prio(td, PRI_MAX_TIMESHARE);
681	mi_switch();
682	mtx_unlock_spin(&sched_lock);
683	td->td_retval[0] = 0;
684
685	return (0);
686}
687
688