kern_synch.c revision 116963
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 116963 2003-06-28 08:29:05Z davidxu $");
43
44#include "opt_ddb.h"
45#include "opt_ktrace.h"
46#ifdef __i386__
47#include "opt_swtch.h"
48#endif
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/condvar.h>
53#include <sys/kernel.h>
54#include <sys/ktr.h>
55#include <sys/lock.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sched.h>
60#include <sys/signalvar.h>
61#include <sys/smp.h>
62#include <sys/sx.h>
63#include <sys/sysctl.h>
64#include <sys/sysproto.h>
65#include <sys/vmmeter.h>
66#ifdef DDB
67#include <ddb/ddb.h>
68#endif
69#ifdef KTRACE
70#include <sys/uio.h>
71#include <sys/ktrace.h>
72#endif
73
74#include <machine/cpu.h>
75
76static void sched_setup(void *dummy);
77SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
78
79int	hogticks;
80int	lbolt;
81
82static struct callout loadav_callout;
83static struct callout lbolt_callout;
84
85struct loadavg averunnable =
86	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87/*
88 * Constants for averages over 1, 5, and 15 minutes
89 * when sampling at 5 second intervals.
90 */
91static fixpt_t cexp[3] = {
92	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95};
96
97/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98static int      fscale __unused = FSCALE;
99SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
100
101static void	endtsleep(void *);
102static void	loadav(void *arg);
103static void	lboltcb(void *arg);
104
105/*
106 * We're only looking at 7 bits of the address; everything is
107 * aligned to 4, lots of things are aligned to greater powers
108 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
109 */
110#define TABLESIZE	128
111static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
112#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
113
114void
115sleepinit(void)
116{
117	int i;
118
119	hogticks = (hz / 10) * 2;	/* Default only. */
120	for (i = 0; i < TABLESIZE; i++)
121		TAILQ_INIT(&slpque[i]);
122}
123
124/*
125 * General sleep call.  Suspends the current process until a wakeup is
126 * performed on the specified identifier.  The process will then be made
127 * runnable with the specified priority.  Sleeps at most timo/hz seconds
128 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
129 * before and after sleeping, else signals are not checked.  Returns 0 if
130 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
131 * signal needs to be delivered, ERESTART is returned if the current system
132 * call should be restarted if possible, and EINTR is returned if the system
133 * call should be interrupted by the signal (return EINTR).
134 *
135 * The mutex argument is exited before the caller is suspended, and
136 * entered before msleep returns.  If priority includes the PDROP
137 * flag the mutex is not entered before returning.
138 */
139
140int
141msleep(ident, mtx, priority, wmesg, timo)
142	void *ident;
143	struct mtx *mtx;
144	int priority, timo;
145	const char *wmesg;
146{
147	struct thread *td = curthread;
148	struct proc *p = td->td_proc;
149	int sig, catch = priority & PCATCH;
150	int rval = 0;
151	WITNESS_SAVE_DECL(mtx);
152
153#ifdef KTRACE
154	if (KTRPOINT(td, KTR_CSW))
155		ktrcsw(1, 0);
156#endif
157	/* XXX: mtx == NULL ?? */
158	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
159	    "Sleeping on \"%s\"", wmesg);
160	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
161	    ("sleeping without a mutex"));
162	/*
163	 * If we are capable of async syscalls and there isn't already
164	 * another one ready to return, start a new thread
165	 * and queue it as ready to run. Note that there is danger here
166	 * because we need to make sure that we don't sleep allocating
167	 * the thread (recursion here might be bad).
168	 */
169	mtx_lock_spin(&sched_lock);
170	if (p->p_flag & P_SA || p->p_numthreads > 1) {
171		/*
172		 * Just don't bother if we are exiting
173		 * and not the exiting thread or thread was marked as
174		 * interrupted.
175		 */
176		if (catch) {
177			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
178				mtx_unlock_spin(&sched_lock);
179				return (EINTR);
180			}
181			if (td->td_flags & TDF_INTERRUPT) {
182				mtx_unlock_spin(&sched_lock);
183				return (td->td_intrval);
184			}
185		}
186	}
187	if (cold ) {
188		/*
189		 * During autoconfiguration, just give interrupts
190		 * a chance, then just return.
191		 * Don't run any other procs or panic below,
192		 * in case this is the idle process and already asleep.
193		 */
194		if (mtx != NULL && priority & PDROP)
195			mtx_unlock(mtx);
196		mtx_unlock_spin(&sched_lock);
197		return (0);
198	}
199
200	DROP_GIANT();
201
202	if (mtx != NULL) {
203		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
204		WITNESS_SAVE(&mtx->mtx_object, mtx);
205		mtx_unlock(mtx);
206		if (priority & PDROP)
207			mtx = NULL;
208	}
209
210	KASSERT(p != NULL, ("msleep1"));
211	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
212
213	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
214	    td, p->p_pid, p->p_comm, wmesg, ident);
215
216	td->td_wchan = ident;
217	td->td_wmesg = wmesg;
218	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
219	TD_SET_ON_SLEEPQ(td);
220	if (timo)
221		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
222	/*
223	 * We put ourselves on the sleep queue and start our timeout
224	 * before calling thread_suspend_check, as we could stop there, and
225	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
226	 * without resuming us, thus we must be ready for sleep
227	 * when cursig is called.  If the wakeup happens while we're
228	 * stopped, td->td_wchan will be 0 upon return from cursig.
229	 */
230	if (catch) {
231		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
232		    p->p_pid, p->p_comm);
233		td->td_flags |= TDF_SINTR;
234		mtx_unlock_spin(&sched_lock);
235		PROC_LOCK(p);
236		mtx_lock(&p->p_sigacts->ps_mtx);
237		sig = cursig(td);
238		mtx_unlock(&p->p_sigacts->ps_mtx);
239		if (sig == 0 && thread_suspend_check(1))
240			sig = SIGSTOP;
241		mtx_lock_spin(&sched_lock);
242		PROC_UNLOCK(p);
243		if (sig != 0) {
244			if (TD_ON_SLEEPQ(td))
245				unsleep(td);
246		} else if (!TD_ON_SLEEPQ(td))
247			catch = 0;
248	} else
249		sig = 0;
250
251	/*
252	 * Let the scheduler know we're about to voluntarily go to sleep.
253	 */
254	sched_sleep(td, priority & PRIMASK);
255
256	if (TD_ON_SLEEPQ(td)) {
257		p->p_stats->p_ru.ru_nvcsw++;
258		TD_SET_SLEEPING(td);
259		mi_switch();
260	}
261	/*
262	 * We're awake from voluntary sleep.
263	 */
264	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
265	    p->p_comm);
266	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
267	td->td_flags &= ~TDF_SINTR;
268	if (td->td_flags & TDF_TIMEOUT) {
269		td->td_flags &= ~TDF_TIMEOUT;
270		if (sig == 0)
271			rval = EWOULDBLOCK;
272	} else if (td->td_flags & TDF_TIMOFAIL) {
273		td->td_flags &= ~TDF_TIMOFAIL;
274	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
275		/*
276		 * This isn't supposed to be pretty.  If we are here, then
277		 * the endtsleep() callout is currently executing on another
278		 * CPU and is either spinning on the sched_lock or will be
279		 * soon.  If we don't synchronize here, there is a chance
280		 * that this process may msleep() again before the callout
281		 * has a chance to run and the callout may end up waking up
282		 * the wrong msleep().  Yuck.
283		 */
284		TD_SET_SLEEPING(td);
285		p->p_stats->p_ru.ru_nivcsw++;
286		mi_switch();
287		td->td_flags &= ~TDF_TIMOFAIL;
288	}
289	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
290	    (rval == 0)) {
291		rval = td->td_intrval;
292	}
293	mtx_unlock_spin(&sched_lock);
294
295	if (rval == 0 && catch) {
296		PROC_LOCK(p);
297		/* XXX: shouldn't we always be calling cursig() */
298		mtx_lock(&p->p_sigacts->ps_mtx);
299		if (sig != 0 || (sig = cursig(td))) {
300			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
301				rval = EINTR;
302			else
303				rval = ERESTART;
304		}
305		mtx_unlock(&p->p_sigacts->ps_mtx);
306		PROC_UNLOCK(p);
307	}
308#ifdef KTRACE
309	if (KTRPOINT(td, KTR_CSW))
310		ktrcsw(0, 0);
311#endif
312	PICKUP_GIANT();
313	if (mtx != NULL) {
314		mtx_lock(mtx);
315		WITNESS_RESTORE(&mtx->mtx_object, mtx);
316	}
317	return (rval);
318}
319
320/*
321 * Implement timeout for msleep()
322 *
323 * If process hasn't been awakened (wchan non-zero),
324 * set timeout flag and undo the sleep.  If proc
325 * is stopped, just unsleep so it will remain stopped.
326 * MP-safe, called without the Giant mutex.
327 */
328static void
329endtsleep(arg)
330	void *arg;
331{
332	register struct thread *td = arg;
333
334	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
335	    td, td->td_proc->p_pid, td->td_proc->p_comm);
336	mtx_lock_spin(&sched_lock);
337	/*
338	 * This is the other half of the synchronization with msleep()
339	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
340	 * race and just need to put the process back on the runqueue.
341	 */
342	if (TD_ON_SLEEPQ(td)) {
343		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
344		TD_CLR_ON_SLEEPQ(td);
345		td->td_flags |= TDF_TIMEOUT;
346		td->td_wmesg = NULL;
347	} else {
348		td->td_flags |= TDF_TIMOFAIL;
349	}
350	TD_CLR_SLEEPING(td);
351	setrunnable(td);
352	mtx_unlock_spin(&sched_lock);
353}
354
355/*
356 * Abort a thread, as if an interrupt had occured.  Only abort
357 * interruptable waits (unfortunatly it isn't only safe to abort others).
358 * This is about identical to cv_abort().
359 * Think about merging them?
360 * Also, whatever the signal code does...
361 */
362void
363abortsleep(struct thread *td)
364{
365
366	mtx_assert(&sched_lock, MA_OWNED);
367	/*
368	 * If the TDF_TIMEOUT flag is set, just leave. A
369	 * timeout is scheduled anyhow.
370	 */
371	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
372		if (TD_ON_SLEEPQ(td)) {
373			unsleep(td);
374			TD_CLR_SLEEPING(td);
375			setrunnable(td);
376		}
377	}
378}
379
380/*
381 * Remove a process from its wait queue
382 */
383void
384unsleep(struct thread *td)
385{
386
387	mtx_lock_spin(&sched_lock);
388	if (TD_ON_SLEEPQ(td)) {
389		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
390		TD_CLR_ON_SLEEPQ(td);
391		td->td_wmesg = NULL;
392	}
393	mtx_unlock_spin(&sched_lock);
394}
395
396/*
397 * Make all processes sleeping on the specified identifier runnable.
398 */
399void
400wakeup(ident)
401	register void *ident;
402{
403	register struct slpquehead *qp;
404	register struct thread *td;
405	struct thread *ntd;
406	struct proc *p;
407
408	mtx_lock_spin(&sched_lock);
409	qp = &slpque[LOOKUP(ident)];
410restart:
411	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
412		ntd = TAILQ_NEXT(td, td_slpq);
413		if (td->td_wchan == ident) {
414			unsleep(td);
415			TD_CLR_SLEEPING(td);
416			setrunnable(td);
417			p = td->td_proc;
418			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
419			    td, p->p_pid, p->p_comm);
420			goto restart;
421		}
422	}
423	mtx_unlock_spin(&sched_lock);
424}
425
426/*
427 * Make a process sleeping on the specified identifier runnable.
428 * May wake more than one process if a target process is currently
429 * swapped out.
430 */
431void
432wakeup_one(ident)
433	register void *ident;
434{
435	register struct slpquehead *qp;
436	register struct thread *td;
437	register struct proc *p;
438	struct thread *ntd;
439
440	mtx_lock_spin(&sched_lock);
441	qp = &slpque[LOOKUP(ident)];
442	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
443		ntd = TAILQ_NEXT(td, td_slpq);
444		if (td->td_wchan == ident) {
445			unsleep(td);
446			TD_CLR_SLEEPING(td);
447			setrunnable(td);
448			p = td->td_proc;
449			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
450			    td, p->p_pid, p->p_comm);
451			break;
452		}
453	}
454	mtx_unlock_spin(&sched_lock);
455}
456
457/*
458 * The machine independent parts of mi_switch().
459 */
460void
461mi_switch(void)
462{
463	struct bintime new_switchtime;
464	struct thread *td;
465#if !defined(__alpha__) && !defined(__powerpc__)
466	struct thread *newtd;
467#endif
468	struct proc *p;
469	u_int sched_nest;
470
471	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
472	td = curthread;			/* XXX */
473	p = td->td_proc;		/* XXX */
474	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
475#ifdef INVARIANTS
476	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
477		mtx_assert(&Giant, MA_NOTOWNED);
478#endif
479	KASSERT(td->td_critnest == 1,
480	    ("mi_switch: switch in a critical section"));
481
482	/*
483	 * Compute the amount of time during which the current
484	 * process was running, and add that to its total so far.
485	 */
486	binuptime(&new_switchtime);
487	bintime_add(&p->p_runtime, &new_switchtime);
488	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
489
490#ifdef DDB
491	/*
492	 * Don't perform context switches from the debugger.
493	 */
494	if (db_active) {
495		mtx_unlock_spin(&sched_lock);
496		db_print_backtrace();
497		db_error("Context switches not allowed in the debugger.");
498	}
499#endif
500
501	/*
502	 * Check if the process exceeds its cpu resource allocation.  If
503	 * over max, arrange to kill the process in ast().
504	 */
505	if (p->p_cpulimit != RLIM_INFINITY &&
506	    p->p_runtime.sec > p->p_cpulimit) {
507		p->p_sflag |= PS_XCPU;
508		td->td_flags |= TDF_ASTPENDING;
509	}
510
511	/*
512	 * Finish up stats for outgoing thread.
513	 */
514	cnt.v_swtch++;
515	PCPU_SET(switchtime, new_switchtime);
516	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
517	    p->p_comm);
518	sched_nest = sched_lock.mtx_recurse;
519	if (td->td_proc->p_flag & P_SA)
520		thread_switchout(td);
521	sched_switchout(td);
522
523#if !defined(__alpha__) && !defined(__powerpc__)
524	newtd = choosethread();
525	if (td != newtd)
526		cpu_switch(td, newtd);	/* SHAZAM!! */
527#else
528	cpu_switch();		/* SHAZAM!!*/
529#endif
530
531	sched_lock.mtx_recurse = sched_nest;
532	sched_lock.mtx_lock = (uintptr_t)td;
533	sched_switchin(td);
534
535	/*
536	 * Start setting up stats etc. for the incoming thread.
537	 * Similar code in fork_exit() is returned to by cpu_switch()
538	 * in the case of a new thread/process.
539	 */
540	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
541	    p->p_comm);
542	if (PCPU_GET(switchtime.sec) == 0)
543		binuptime(PCPU_PTR(switchtime));
544	PCPU_SET(switchticks, ticks);
545
546	/*
547	 * Call the switchin function while still holding the scheduler lock
548	 * (used by the idlezero code and the general page-zeroing code)
549	 */
550	if (td->td_switchin)
551		td->td_switchin();
552
553	/*
554	 * If the last thread was exiting, finish cleaning it up.
555	 */
556	if ((td = PCPU_GET(deadthread))) {
557		PCPU_SET(deadthread, NULL);
558		thread_stash(td);
559	}
560}
561
562/*
563 * Change process state to be runnable,
564 * placing it on the run queue if it is in memory,
565 * and awakening the swapper if it isn't in memory.
566 */
567void
568setrunnable(struct thread *td)
569{
570	struct proc *p = td->td_proc;
571
572	mtx_assert(&sched_lock, MA_OWNED);
573	switch (p->p_state) {
574	case PRS_ZOMBIE:
575		panic("setrunnable(1)");
576	default:
577		break;
578	}
579	switch (td->td_state) {
580	case TDS_RUNNING:
581	case TDS_RUNQ:
582		return;
583	case TDS_INHIBITED:
584		/*
585		 * If we are only inhibited because we are swapped out
586		 * then arange to swap in this process. Otherwise just return.
587		 */
588		if (td->td_inhibitors != TDI_SWAPPED)
589			return;
590		/* XXX: intentional fall-through ? */
591	case TDS_CAN_RUN:
592		break;
593	default:
594		printf("state is 0x%x", td->td_state);
595		panic("setrunnable(2)");
596	}
597	if ((p->p_sflag & PS_INMEM) == 0) {
598		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
599			p->p_sflag |= PS_SWAPINREQ;
600			wakeup(&proc0);
601		}
602	} else
603		sched_wakeup(td);
604}
605
606/*
607 * Compute a tenex style load average of a quantity on
608 * 1, 5 and 15 minute intervals.
609 * XXXKSE   Needs complete rewrite when correct info is available.
610 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
611 */
612static void
613loadav(void *arg)
614{
615	int i, nrun;
616	struct loadavg *avg;
617	struct proc *p;
618	struct thread *td;
619
620	avg = &averunnable;
621	sx_slock(&allproc_lock);
622	nrun = 0;
623	FOREACH_PROC_IN_SYSTEM(p) {
624		FOREACH_THREAD_IN_PROC(p, td) {
625			switch (td->td_state) {
626			case TDS_RUNQ:
627			case TDS_RUNNING:
628				if ((p->p_flag & P_NOLOAD) != 0)
629					goto nextproc;
630				nrun++; /* XXXKSE */
631			default:
632				break;
633			}
634nextproc:
635			continue;
636		}
637	}
638	sx_sunlock(&allproc_lock);
639	for (i = 0; i < 3; i++)
640		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
641		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
642
643	/*
644	 * Schedule the next update to occur after 5 seconds, but add a
645	 * random variation to avoid synchronisation with processes that
646	 * run at regular intervals.
647	 */
648	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
649	    loadav, NULL);
650}
651
652static void
653lboltcb(void *arg)
654{
655	wakeup(&lbolt);
656	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
657}
658
659/* ARGSUSED */
660static void
661sched_setup(dummy)
662	void *dummy;
663{
664	callout_init(&loadav_callout, 0);
665	callout_init(&lbolt_callout, 1);
666
667	/* Kick off timeout driven events by calling first time. */
668	loadav(NULL);
669	lboltcb(NULL);
670}
671
672/*
673 * General purpose yield system call
674 */
675int
676yield(struct thread *td, struct yield_args *uap)
677{
678	struct ksegrp *kg = td->td_ksegrp;
679
680	mtx_assert(&Giant, MA_NOTOWNED);
681	mtx_lock_spin(&sched_lock);
682	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
683	sched_prio(td, PRI_MAX_TIMESHARE);
684	mi_switch();
685	mtx_unlock_spin(&sched_lock);
686	td->td_retval[0] = 0;
687
688	return (0);
689}
690
691