kern_synch.c revision 116930
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 116930 2003-06-27 22:39:14Z peter $");
43
44#include "opt_ddb.h"
45#include "opt_ktrace.h"
46#ifdef __i386__
47#include "opt_swtch.h"
48#endif
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/condvar.h>
53#include <sys/kernel.h>
54#include <sys/ktr.h>
55#include <sys/lock.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sched.h>
60#include <sys/signalvar.h>
61#include <sys/smp.h>
62#include <sys/sx.h>
63#include <sys/sysctl.h>
64#include <sys/sysproto.h>
65#include <sys/vmmeter.h>
66#ifdef DDB
67#include <ddb/ddb.h>
68#endif
69#ifdef KTRACE
70#include <sys/uio.h>
71#include <sys/ktrace.h>
72#endif
73
74#include <machine/cpu.h>
75
76static void sched_setup(void *dummy);
77SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
78
79int	hogticks;
80int	lbolt;
81
82static struct callout loadav_callout;
83static struct callout lbolt_callout;
84
85struct loadavg averunnable =
86	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87/*
88 * Constants for averages over 1, 5, and 15 minutes
89 * when sampling at 5 second intervals.
90 */
91static fixpt_t cexp[3] = {
92	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95};
96
97/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98static int      fscale __unused = FSCALE;
99SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
100
101static void	endtsleep(void *);
102static void	loadav(void *arg);
103static void	lboltcb(void *arg);
104
105/*
106 * We're only looking at 7 bits of the address; everything is
107 * aligned to 4, lots of things are aligned to greater powers
108 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
109 */
110#define TABLESIZE	128
111static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
112#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
113
114void
115sleepinit(void)
116{
117	int i;
118
119	hogticks = (hz / 10) * 2;	/* Default only. */
120	for (i = 0; i < TABLESIZE; i++)
121		TAILQ_INIT(&slpque[i]);
122}
123
124/*
125 * General sleep call.  Suspends the current process until a wakeup is
126 * performed on the specified identifier.  The process will then be made
127 * runnable with the specified priority.  Sleeps at most timo/hz seconds
128 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
129 * before and after sleeping, else signals are not checked.  Returns 0 if
130 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
131 * signal needs to be delivered, ERESTART is returned if the current system
132 * call should be restarted if possible, and EINTR is returned if the system
133 * call should be interrupted by the signal (return EINTR).
134 *
135 * The mutex argument is exited before the caller is suspended, and
136 * entered before msleep returns.  If priority includes the PDROP
137 * flag the mutex is not entered before returning.
138 */
139
140int
141msleep(ident, mtx, priority, wmesg, timo)
142	void *ident;
143	struct mtx *mtx;
144	int priority, timo;
145	const char *wmesg;
146{
147	struct thread *td = curthread;
148	struct proc *p = td->td_proc;
149	int sig, catch = priority & PCATCH;
150	int rval = 0;
151	WITNESS_SAVE_DECL(mtx);
152
153#ifdef KTRACE
154	if (KTRPOINT(td, KTR_CSW))
155		ktrcsw(1, 0);
156#endif
157	/* XXX: mtx == NULL ?? */
158	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
159	    "Sleeping on \"%s\"", wmesg);
160	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
161	    ("sleeping without a mutex"));
162	/*
163	 * If we are capable of async syscalls and there isn't already
164	 * another one ready to return, start a new thread
165	 * and queue it as ready to run. Note that there is danger here
166	 * because we need to make sure that we don't sleep allocating
167	 * the thread (recursion here might be bad).
168	 */
169	mtx_lock_spin(&sched_lock);
170	if (p->p_flag & P_SA || p->p_numthreads > 1) {
171		/*
172		 * Just don't bother if we are exiting
173		 * and not the exiting thread or thread was marked as
174		 * interrupted.
175		 */
176		if (catch &&
177		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
178		     (td->td_flags & TDF_INTERRUPT))) {
179			td->td_flags &= ~TDF_INTERRUPT;
180			mtx_unlock_spin(&sched_lock);
181			return (EINTR);
182		}
183	}
184	if (cold ) {
185		/*
186		 * During autoconfiguration, just give interrupts
187		 * a chance, then just return.
188		 * Don't run any other procs or panic below,
189		 * in case this is the idle process and already asleep.
190		 */
191		if (mtx != NULL && priority & PDROP)
192			mtx_unlock(mtx);
193		mtx_unlock_spin(&sched_lock);
194		return (0);
195	}
196
197	DROP_GIANT();
198
199	if (mtx != NULL) {
200		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
201		WITNESS_SAVE(&mtx->mtx_object, mtx);
202		mtx_unlock(mtx);
203		if (priority & PDROP)
204			mtx = NULL;
205	}
206
207	KASSERT(p != NULL, ("msleep1"));
208	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
209
210	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
211	    td, p->p_pid, p->p_comm, wmesg, ident);
212
213	td->td_wchan = ident;
214	td->td_wmesg = wmesg;
215	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
216	TD_SET_ON_SLEEPQ(td);
217	if (timo)
218		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
219	/*
220	 * We put ourselves on the sleep queue and start our timeout
221	 * before calling thread_suspend_check, as we could stop there, and
222	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
223	 * without resuming us, thus we must be ready for sleep
224	 * when cursig is called.  If the wakeup happens while we're
225	 * stopped, td->td_wchan will be 0 upon return from cursig.
226	 */
227	if (catch) {
228		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
229		    p->p_pid, p->p_comm);
230		td->td_flags |= TDF_SINTR;
231		mtx_unlock_spin(&sched_lock);
232		PROC_LOCK(p);
233		mtx_lock(&p->p_sigacts->ps_mtx);
234		sig = cursig(td);
235		mtx_unlock(&p->p_sigacts->ps_mtx);
236		if (sig == 0 && thread_suspend_check(1))
237			sig = SIGSTOP;
238		mtx_lock_spin(&sched_lock);
239		PROC_UNLOCK(p);
240		if (sig != 0) {
241			if (TD_ON_SLEEPQ(td))
242				unsleep(td);
243		} else if (!TD_ON_SLEEPQ(td))
244			catch = 0;
245	} else
246		sig = 0;
247
248	/*
249	 * Let the scheduler know we're about to voluntarily go to sleep.
250	 */
251	sched_sleep(td, priority & PRIMASK);
252
253	if (TD_ON_SLEEPQ(td)) {
254		p->p_stats->p_ru.ru_nvcsw++;
255		TD_SET_SLEEPING(td);
256		mi_switch();
257	}
258	/*
259	 * We're awake from voluntary sleep.
260	 */
261	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
262	    p->p_comm);
263	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
264	td->td_flags &= ~TDF_SINTR;
265	if (td->td_flags & TDF_TIMEOUT) {
266		td->td_flags &= ~TDF_TIMEOUT;
267		if (sig == 0)
268			rval = EWOULDBLOCK;
269	} else if (td->td_flags & TDF_TIMOFAIL) {
270		td->td_flags &= ~TDF_TIMOFAIL;
271	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
272		/*
273		 * This isn't supposed to be pretty.  If we are here, then
274		 * the endtsleep() callout is currently executing on another
275		 * CPU and is either spinning on the sched_lock or will be
276		 * soon.  If we don't synchronize here, there is a chance
277		 * that this process may msleep() again before the callout
278		 * has a chance to run and the callout may end up waking up
279		 * the wrong msleep().  Yuck.
280		 */
281		TD_SET_SLEEPING(td);
282		p->p_stats->p_ru.ru_nivcsw++;
283		mi_switch();
284		td->td_flags &= ~TDF_TIMOFAIL;
285	}
286	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
287	    (rval == 0)) {
288		td->td_flags &= ~TDF_INTERRUPT;
289		rval = EINTR;
290	}
291	mtx_unlock_spin(&sched_lock);
292
293	if (rval == 0 && catch) {
294		PROC_LOCK(p);
295		/* XXX: shouldn't we always be calling cursig() */
296		mtx_lock(&p->p_sigacts->ps_mtx);
297		if (sig != 0 || (sig = cursig(td))) {
298			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
299				rval = EINTR;
300			else
301				rval = ERESTART;
302		}
303		mtx_unlock(&p->p_sigacts->ps_mtx);
304		PROC_UNLOCK(p);
305	}
306#ifdef KTRACE
307	if (KTRPOINT(td, KTR_CSW))
308		ktrcsw(0, 0);
309#endif
310	PICKUP_GIANT();
311	if (mtx != NULL) {
312		mtx_lock(mtx);
313		WITNESS_RESTORE(&mtx->mtx_object, mtx);
314	}
315	return (rval);
316}
317
318/*
319 * Implement timeout for msleep()
320 *
321 * If process hasn't been awakened (wchan non-zero),
322 * set timeout flag and undo the sleep.  If proc
323 * is stopped, just unsleep so it will remain stopped.
324 * MP-safe, called without the Giant mutex.
325 */
326static void
327endtsleep(arg)
328	void *arg;
329{
330	register struct thread *td = arg;
331
332	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
333	    td, td->td_proc->p_pid, td->td_proc->p_comm);
334	mtx_lock_spin(&sched_lock);
335	/*
336	 * This is the other half of the synchronization with msleep()
337	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
338	 * race and just need to put the process back on the runqueue.
339	 */
340	if (TD_ON_SLEEPQ(td)) {
341		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
342		TD_CLR_ON_SLEEPQ(td);
343		td->td_flags |= TDF_TIMEOUT;
344		td->td_wmesg = NULL;
345	} else {
346		td->td_flags |= TDF_TIMOFAIL;
347	}
348	TD_CLR_SLEEPING(td);
349	setrunnable(td);
350	mtx_unlock_spin(&sched_lock);
351}
352
353/*
354 * Abort a thread, as if an interrupt had occured.  Only abort
355 * interruptable waits (unfortunatly it isn't only safe to abort others).
356 * This is about identical to cv_abort().
357 * Think about merging them?
358 * Also, whatever the signal code does...
359 */
360void
361abortsleep(struct thread *td)
362{
363
364	mtx_assert(&sched_lock, MA_OWNED);
365	/*
366	 * If the TDF_TIMEOUT flag is set, just leave. A
367	 * timeout is scheduled anyhow.
368	 */
369	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
370		if (TD_ON_SLEEPQ(td)) {
371			unsleep(td);
372			TD_CLR_SLEEPING(td);
373			setrunnable(td);
374		}
375	}
376}
377
378/*
379 * Remove a process from its wait queue
380 */
381void
382unsleep(struct thread *td)
383{
384
385	mtx_lock_spin(&sched_lock);
386	if (TD_ON_SLEEPQ(td)) {
387		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
388		TD_CLR_ON_SLEEPQ(td);
389		td->td_wmesg = NULL;
390	}
391	mtx_unlock_spin(&sched_lock);
392}
393
394/*
395 * Make all processes sleeping on the specified identifier runnable.
396 */
397void
398wakeup(ident)
399	register void *ident;
400{
401	register struct slpquehead *qp;
402	register struct thread *td;
403	struct thread *ntd;
404	struct proc *p;
405
406	mtx_lock_spin(&sched_lock);
407	qp = &slpque[LOOKUP(ident)];
408restart:
409	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
410		ntd = TAILQ_NEXT(td, td_slpq);
411		if (td->td_wchan == ident) {
412			unsleep(td);
413			TD_CLR_SLEEPING(td);
414			setrunnable(td);
415			p = td->td_proc;
416			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
417			    td, p->p_pid, p->p_comm);
418			goto restart;
419		}
420	}
421	mtx_unlock_spin(&sched_lock);
422}
423
424/*
425 * Make a process sleeping on the specified identifier runnable.
426 * May wake more than one process if a target process is currently
427 * swapped out.
428 */
429void
430wakeup_one(ident)
431	register void *ident;
432{
433	register struct slpquehead *qp;
434	register struct thread *td;
435	register struct proc *p;
436	struct thread *ntd;
437
438	mtx_lock_spin(&sched_lock);
439	qp = &slpque[LOOKUP(ident)];
440	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
441		ntd = TAILQ_NEXT(td, td_slpq);
442		if (td->td_wchan == ident) {
443			unsleep(td);
444			TD_CLR_SLEEPING(td);
445			setrunnable(td);
446			p = td->td_proc;
447			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
448			    td, p->p_pid, p->p_comm);
449			break;
450		}
451	}
452	mtx_unlock_spin(&sched_lock);
453}
454
455/*
456 * The machine independent parts of mi_switch().
457 */
458void
459mi_switch(void)
460{
461	struct bintime new_switchtime;
462	struct thread *td;
463#if !defined(__alpha__) && !defined(__powerpc__)
464	struct thread *newtd;
465#endif
466	struct proc *p;
467	u_int sched_nest;
468
469	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
470	td = curthread;			/* XXX */
471	p = td->td_proc;		/* XXX */
472	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
473#ifdef INVARIANTS
474	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
475		mtx_assert(&Giant, MA_NOTOWNED);
476#endif
477	KASSERT(td->td_critnest == 1,
478	    ("mi_switch: switch in a critical section"));
479
480	/*
481	 * Compute the amount of time during which the current
482	 * process was running, and add that to its total so far.
483	 */
484	binuptime(&new_switchtime);
485	bintime_add(&p->p_runtime, &new_switchtime);
486	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
487
488#ifdef DDB
489	/*
490	 * Don't perform context switches from the debugger.
491	 */
492	if (db_active) {
493		mtx_unlock_spin(&sched_lock);
494		db_print_backtrace();
495		db_error("Context switches not allowed in the debugger.");
496	}
497#endif
498
499	/*
500	 * Check if the process exceeds its cpu resource allocation.  If
501	 * over max, arrange to kill the process in ast().
502	 */
503	if (p->p_cpulimit != RLIM_INFINITY &&
504	    p->p_runtime.sec > p->p_cpulimit) {
505		p->p_sflag |= PS_XCPU;
506		td->td_flags |= TDF_ASTPENDING;
507	}
508
509	/*
510	 * Finish up stats for outgoing thread.
511	 */
512	cnt.v_swtch++;
513	PCPU_SET(switchtime, new_switchtime);
514	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
515	    p->p_comm);
516	sched_nest = sched_lock.mtx_recurse;
517	if (td->td_proc->p_flag & P_SA)
518		thread_switchout(td);
519	sched_switchout(td);
520
521#if !defined(__alpha__) && !defined(__powerpc__)
522	newtd = choosethread();
523	if (td != newtd)
524		cpu_switch(td, newtd);	/* SHAZAM!! */
525#else
526	cpu_switch();		/* SHAZAM!!*/
527#endif
528
529	sched_lock.mtx_recurse = sched_nest;
530	sched_lock.mtx_lock = (uintptr_t)td;
531	sched_switchin(td);
532
533	/*
534	 * Start setting up stats etc. for the incoming thread.
535	 * Similar code in fork_exit() is returned to by cpu_switch()
536	 * in the case of a new thread/process.
537	 */
538	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
539	    p->p_comm);
540	if (PCPU_GET(switchtime.sec) == 0)
541		binuptime(PCPU_PTR(switchtime));
542	PCPU_SET(switchticks, ticks);
543
544	/*
545	 * Call the switchin function while still holding the scheduler lock
546	 * (used by the idlezero code and the general page-zeroing code)
547	 */
548	if (td->td_switchin)
549		td->td_switchin();
550
551	/*
552	 * If the last thread was exiting, finish cleaning it up.
553	 */
554	if ((td = PCPU_GET(deadthread))) {
555		PCPU_SET(deadthread, NULL);
556		thread_stash(td);
557	}
558}
559
560/*
561 * Change process state to be runnable,
562 * placing it on the run queue if it is in memory,
563 * and awakening the swapper if it isn't in memory.
564 */
565void
566setrunnable(struct thread *td)
567{
568	struct proc *p = td->td_proc;
569
570	mtx_assert(&sched_lock, MA_OWNED);
571	switch (p->p_state) {
572	case PRS_ZOMBIE:
573		panic("setrunnable(1)");
574	default:
575		break;
576	}
577	switch (td->td_state) {
578	case TDS_RUNNING:
579	case TDS_RUNQ:
580		return;
581	case TDS_INHIBITED:
582		/*
583		 * If we are only inhibited because we are swapped out
584		 * then arange to swap in this process. Otherwise just return.
585		 */
586		if (td->td_inhibitors != TDI_SWAPPED)
587			return;
588		/* XXX: intentional fall-through ? */
589	case TDS_CAN_RUN:
590		break;
591	default:
592		printf("state is 0x%x", td->td_state);
593		panic("setrunnable(2)");
594	}
595	if ((p->p_sflag & PS_INMEM) == 0) {
596		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
597			p->p_sflag |= PS_SWAPINREQ;
598			wakeup(&proc0);
599		}
600	} else
601		sched_wakeup(td);
602}
603
604/*
605 * Compute a tenex style load average of a quantity on
606 * 1, 5 and 15 minute intervals.
607 * XXXKSE   Needs complete rewrite when correct info is available.
608 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
609 */
610static void
611loadav(void *arg)
612{
613	int i, nrun;
614	struct loadavg *avg;
615	struct proc *p;
616	struct thread *td;
617
618	avg = &averunnable;
619	sx_slock(&allproc_lock);
620	nrun = 0;
621	FOREACH_PROC_IN_SYSTEM(p) {
622		FOREACH_THREAD_IN_PROC(p, td) {
623			switch (td->td_state) {
624			case TDS_RUNQ:
625			case TDS_RUNNING:
626				if ((p->p_flag & P_NOLOAD) != 0)
627					goto nextproc;
628				nrun++; /* XXXKSE */
629			default:
630				break;
631			}
632nextproc:
633			continue;
634		}
635	}
636	sx_sunlock(&allproc_lock);
637	for (i = 0; i < 3; i++)
638		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
639		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
640
641	/*
642	 * Schedule the next update to occur after 5 seconds, but add a
643	 * random variation to avoid synchronisation with processes that
644	 * run at regular intervals.
645	 */
646	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
647	    loadav, NULL);
648}
649
650static void
651lboltcb(void *arg)
652{
653	wakeup(&lbolt);
654	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
655}
656
657/* ARGSUSED */
658static void
659sched_setup(dummy)
660	void *dummy;
661{
662	callout_init(&loadav_callout, 0);
663	callout_init(&lbolt_callout, 1);
664
665	/* Kick off timeout driven events by calling first time. */
666	loadav(NULL);
667	lboltcb(NULL);
668}
669
670/*
671 * General purpose yield system call
672 */
673int
674yield(struct thread *td, struct yield_args *uap)
675{
676	struct ksegrp *kg = td->td_ksegrp;
677
678	mtx_assert(&Giant, MA_NOTOWNED);
679	mtx_lock_spin(&sched_lock);
680	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
681	sched_prio(td, PRI_MAX_TIMESHARE);
682	mi_switch();
683	mtx_unlock_spin(&sched_lock);
684	td->td_retval[0] = 0;
685
686	return (0);
687}
688
689