kern_synch.c revision 116182
1198090Srdivacky/*-
2198090Srdivacky * Copyright (c) 1982, 1986, 1990, 1991, 1993
3353358Sdim *	The Regents of the University of California.  All rights reserved.
4353358Sdim * (c) UNIX System Laboratories, Inc.
5353358Sdim * All or some portions of this file are derived from material licensed
6198090Srdivacky * to the University of California by American Telephone and Telegraph
7198090Srdivacky * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8198090Srdivacky * the permission of UNIX System Laboratories, Inc.
9198090Srdivacky *
10198090Srdivacky * Redistribution and use in source and binary forms, with or without
11198090Srdivacky * modification, are permitted provided that the following conditions
12204642Srdivacky * are met:
13204642Srdivacky * 1. Redistributions of source code must retain the above copyright
14210299Sed *    notice, this list of conditions and the following disclaimer.
15204642Srdivacky * 2. Redistributions in binary form must reproduce the above copyright
16198090Srdivacky *    notice, this list of conditions and the following disclaimer in the
17198090Srdivacky *    documentation and/or other materials provided with the distribution.
18198090Srdivacky * 3. All advertising materials mentioning features or use of this software
19198090Srdivacky *    must display the following acknowledgement:
20198090Srdivacky *	This product includes software developed by the University of
21296417Sdim *	California, Berkeley and its contributors.
22360784Sdim * 4. Neither the name of the University nor the names of its contributors
23198090Srdivacky *    may be used to endorse or promote products derived from this software
24198090Srdivacky *    without specific prior written permission.
25296417Sdim *
26353358Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27210299Sed * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28210299Sed * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29210299Sed * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30344779Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31210299Sed * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32210299Sed * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33296417Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34296417Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35296417Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36198090Srdivacky * SUCH DAMAGE.
37198090Srdivacky *
38296417Sdim *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39296417Sdim */
40198090Srdivacky
41198090Srdivacky#include <sys/cdefs.h>
42198090Srdivacky__FBSDID("$FreeBSD: head/sys/kern/kern_synch.c 116182 2003-06-11 00:56:59Z obrien $");
43296417Sdim
44296417Sdim#include "opt_ddb.h"
45296417Sdim#include "opt_ktrace.h"
46344779Sdim#ifdef __i386__
47344779Sdim#include "opt_swtch.h"
48344779Sdim#endif
49344779Sdim
50344779Sdim#include <sys/param.h>
51344779Sdim#include <sys/systm.h>
52210299Sed#include <sys/condvar.h>
53210299Sed#include <sys/kernel.h>
54296417Sdim#include <sys/ktr.h>
55210299Sed#include <sys/lock.h>
56210299Sed#include <sys/mutex.h>
57210299Sed#include <sys/proc.h>
58210299Sed#include <sys/resourcevar.h>
59296417Sdim#include <sys/sched.h>
60296417Sdim#include <sys/signalvar.h>
61210299Sed#include <sys/smp.h>
62210299Sed#include <sys/sx.h>
63210299Sed#include <sys/sysctl.h>
64210299Sed#include <sys/sysproto.h>
65210299Sed#include <sys/vmmeter.h>
66210299Sed#ifdef DDB
67210299Sed#include <ddb/ddb.h>
68296417Sdim#endif
69210299Sed#ifdef KTRACE
70210299Sed#include <sys/uio.h>
71210299Sed#include <sys/ktrace.h>
72210299Sed#endif
73296417Sdim
74296417Sdim#include <machine/cpu.h>
75210299Sed#ifdef SWTCH_OPTIM_STATS
76198090Srdivacky#include <machine/md_var.h>
77198090Srdivacky#endif
78198090Srdivacky
79198090Srdivackystatic void sched_setup(void *dummy);
80198090SrdivackySYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
81198892Srdivacky
82198892Srdivackyint	hogticks;
83218893Sdimint	lbolt;
84288943Sdim
85344779Sdimstatic struct callout loadav_callout;
86288943Sdimstatic struct callout lbolt_callout;
87288943Sdim
88344779Sdimstruct loadavg averunnable =
89353358Sdim	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
90353358Sdim/*
91198090Srdivacky * Constants for averages over 1, 5, and 15 minutes
92198090Srdivacky * when sampling at 5 second intervals.
93198090Srdivacky */
94353358Sdimstatic fixpt_t cexp[3] = {
95198090Srdivacky	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
96296417Sdim	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
97296417Sdim	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
98296417Sdim};
99296417Sdim
100296417Sdim/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
101296417Sdimstatic int      fscale __unused = FSCALE;
102296417SdimSYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
103296417Sdim
104296417Sdimstatic void	endtsleep(void *);
105296417Sdimstatic void	loadav(void *arg);
106296417Sdimstatic void	lboltcb(void *arg);
107296417Sdim
108296417Sdim/*
109296417Sdim * We're only looking at 7 bits of the address; everything is
110296417Sdim * aligned to 4, lots of things are aligned to greater powers
111296417Sdim * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
112296417Sdim */
113296417Sdim#define TABLESIZE	128
114296417Sdimstatic TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
115296417Sdim#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
116296417Sdim
117296417Sdimvoid
118314564Sdimsleepinit(void)
119309124Sdim{
120314564Sdim	int i;
121309124Sdim
122296417Sdim	hogticks = (hz / 10) * 2;	/* Default only. */
123296417Sdim	for (i = 0; i < TABLESIZE; i++)
124296417Sdim		TAILQ_INIT(&slpque[i]);
125296417Sdim}
126296417Sdim
127296417Sdim/*
128296417Sdim * General sleep call.  Suspends the current process until a wakeup is
129296417Sdim * performed on the specified identifier.  The process will then be made
130296417Sdim * runnable with the specified priority.  Sleeps at most timo/hz seconds
131296417Sdim * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
132296417Sdim * before and after sleeping, else signals are not checked.  Returns 0 if
133296417Sdim * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
134296417Sdim * signal needs to be delivered, ERESTART is returned if the current system
135296417Sdim * call should be restarted if possible, and EINTR is returned if the system
136296417Sdim * call should be interrupted by the signal (return EINTR).
137296417Sdim *
138296417Sdim * The mutex argument is exited before the caller is suspended, and
139296417Sdim * entered before msleep returns.  If priority includes the PDROP
140296417Sdim * flag the mutex is not entered before returning.
141309124Sdim */
142296417Sdim
143296417Sdimint
144296417Sdimmsleep(ident, mtx, priority, wmesg, timo)
145296417Sdim	void *ident;
146296417Sdim	struct mtx *mtx;
147296417Sdim	int priority, timo;
148296417Sdim	const char *wmesg;
149{
150	struct thread *td = curthread;
151	struct proc *p = td->td_proc;
152	int sig, catch = priority & PCATCH;
153	int rval = 0;
154	WITNESS_SAVE_DECL(mtx);
155
156#ifdef KTRACE
157	if (KTRPOINT(td, KTR_CSW))
158		ktrcsw(1, 0);
159#endif
160	/* XXX: mtx == NULL ?? */
161	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
162	    "Sleeping on \"%s\"", wmesg);
163	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
164	    ("sleeping without a mutex"));
165	/*
166	 * If we are capable of async syscalls and there isn't already
167	 * another one ready to return, start a new thread
168	 * and queue it as ready to run. Note that there is danger here
169	 * because we need to make sure that we don't sleep allocating
170	 * the thread (recursion here might be bad).
171	 */
172	mtx_lock_spin(&sched_lock);
173	if (p->p_flag & P_THREADED || p->p_numthreads > 1) {
174		/*
175		 * Just don't bother if we are exiting
176		 * and not the exiting thread or thread was marked as
177		 * interrupted.
178		 */
179		if (catch &&
180		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
181		     (td->td_flags & TDF_INTERRUPT))) {
182			td->td_flags &= ~TDF_INTERRUPT;
183			mtx_unlock_spin(&sched_lock);
184			return (EINTR);
185		}
186	}
187	if (cold ) {
188		/*
189		 * During autoconfiguration, just give interrupts
190		 * a chance, then just return.
191		 * Don't run any other procs or panic below,
192		 * in case this is the idle process and already asleep.
193		 */
194		if (mtx != NULL && priority & PDROP)
195			mtx_unlock(mtx);
196		mtx_unlock_spin(&sched_lock);
197		return (0);
198	}
199
200	DROP_GIANT();
201
202	if (mtx != NULL) {
203		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
204		WITNESS_SAVE(&mtx->mtx_object, mtx);
205		mtx_unlock(mtx);
206		if (priority & PDROP)
207			mtx = NULL;
208	}
209
210	KASSERT(p != NULL, ("msleep1"));
211	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
212
213	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
214	    td, p->p_pid, p->p_comm, wmesg, ident);
215
216	td->td_wchan = ident;
217	td->td_wmesg = wmesg;
218	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
219	TD_SET_ON_SLEEPQ(td);
220	if (timo)
221		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
222	/*
223	 * We put ourselves on the sleep queue and start our timeout
224	 * before calling thread_suspend_check, as we could stop there, and
225	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
226	 * without resuming us, thus we must be ready for sleep
227	 * when cursig is called.  If the wakeup happens while we're
228	 * stopped, td->td_wchan will be 0 upon return from cursig.
229	 */
230	if (catch) {
231		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
232		    p->p_pid, p->p_comm);
233		td->td_flags |= TDF_SINTR;
234		mtx_unlock_spin(&sched_lock);
235		PROC_LOCK(p);
236		mtx_lock(&p->p_sigacts->ps_mtx);
237		sig = cursig(td);
238		mtx_unlock(&p->p_sigacts->ps_mtx);
239		if (sig == 0 && thread_suspend_check(1))
240			sig = SIGSTOP;
241		mtx_lock_spin(&sched_lock);
242		PROC_UNLOCK(p);
243		if (sig != 0) {
244			if (TD_ON_SLEEPQ(td))
245				unsleep(td);
246		} else if (!TD_ON_SLEEPQ(td))
247			catch = 0;
248	} else
249		sig = 0;
250
251	/*
252	 * Let the scheduler know we're about to voluntarily go to sleep.
253	 */
254	sched_sleep(td, priority & PRIMASK);
255
256	if (TD_ON_SLEEPQ(td)) {
257		p->p_stats->p_ru.ru_nvcsw++;
258		TD_SET_SLEEPING(td);
259		mi_switch();
260	}
261	/*
262	 * We're awake from voluntary sleep.
263	 */
264	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
265	    p->p_comm);
266	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
267	td->td_flags &= ~TDF_SINTR;
268	if (td->td_flags & TDF_TIMEOUT) {
269		td->td_flags &= ~TDF_TIMEOUT;
270		if (sig == 0)
271			rval = EWOULDBLOCK;
272	} else if (td->td_flags & TDF_TIMOFAIL) {
273		td->td_flags &= ~TDF_TIMOFAIL;
274	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
275		/*
276		 * This isn't supposed to be pretty.  If we are here, then
277		 * the endtsleep() callout is currently executing on another
278		 * CPU and is either spinning on the sched_lock or will be
279		 * soon.  If we don't synchronize here, there is a chance
280		 * that this process may msleep() again before the callout
281		 * has a chance to run and the callout may end up waking up
282		 * the wrong msleep().  Yuck.
283		 */
284		TD_SET_SLEEPING(td);
285		p->p_stats->p_ru.ru_nivcsw++;
286		mi_switch();
287		td->td_flags &= ~TDF_TIMOFAIL;
288	}
289	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
290	    (rval == 0)) {
291		td->td_flags &= ~TDF_INTERRUPT;
292		rval = EINTR;
293	}
294	mtx_unlock_spin(&sched_lock);
295
296	if (rval == 0 && catch) {
297		PROC_LOCK(p);
298		/* XXX: shouldn't we always be calling cursig() */
299		mtx_lock(&p->p_sigacts->ps_mtx);
300		if (sig != 0 || (sig = cursig(td))) {
301			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
302				rval = EINTR;
303			else
304				rval = ERESTART;
305		}
306		mtx_unlock(&p->p_sigacts->ps_mtx);
307		PROC_UNLOCK(p);
308	}
309#ifdef KTRACE
310	if (KTRPOINT(td, KTR_CSW))
311		ktrcsw(0, 0);
312#endif
313	PICKUP_GIANT();
314	if (mtx != NULL) {
315		mtx_lock(mtx);
316		WITNESS_RESTORE(&mtx->mtx_object, mtx);
317	}
318	return (rval);
319}
320
321/*
322 * Implement timeout for msleep()
323 *
324 * If process hasn't been awakened (wchan non-zero),
325 * set timeout flag and undo the sleep.  If proc
326 * is stopped, just unsleep so it will remain stopped.
327 * MP-safe, called without the Giant mutex.
328 */
329static void
330endtsleep(arg)
331	void *arg;
332{
333	register struct thread *td = arg;
334
335	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
336	    td, td->td_proc->p_pid, td->td_proc->p_comm);
337	mtx_lock_spin(&sched_lock);
338	/*
339	 * This is the other half of the synchronization with msleep()
340	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
341	 * race and just need to put the process back on the runqueue.
342	 */
343	if (TD_ON_SLEEPQ(td)) {
344		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
345		TD_CLR_ON_SLEEPQ(td);
346		td->td_flags |= TDF_TIMEOUT;
347		td->td_wmesg = NULL;
348	} else {
349		td->td_flags |= TDF_TIMOFAIL;
350	}
351	TD_CLR_SLEEPING(td);
352	setrunnable(td);
353	mtx_unlock_spin(&sched_lock);
354}
355
356/*
357 * Abort a thread, as if an interrupt had occured.  Only abort
358 * interruptable waits (unfortunatly it isn't only safe to abort others).
359 * This is about identical to cv_abort().
360 * Think about merging them?
361 * Also, whatever the signal code does...
362 */
363void
364abortsleep(struct thread *td)
365{
366
367	mtx_assert(&sched_lock, MA_OWNED);
368	/*
369	 * If the TDF_TIMEOUT flag is set, just leave. A
370	 * timeout is scheduled anyhow.
371	 */
372	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
373		if (TD_ON_SLEEPQ(td)) {
374			unsleep(td);
375			TD_CLR_SLEEPING(td);
376			setrunnable(td);
377		}
378	}
379}
380
381/*
382 * Remove a process from its wait queue
383 */
384void
385unsleep(struct thread *td)
386{
387
388	mtx_lock_spin(&sched_lock);
389	if (TD_ON_SLEEPQ(td)) {
390		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
391		TD_CLR_ON_SLEEPQ(td);
392		td->td_wmesg = NULL;
393	}
394	mtx_unlock_spin(&sched_lock);
395}
396
397/*
398 * Make all processes sleeping on the specified identifier runnable.
399 */
400void
401wakeup(ident)
402	register void *ident;
403{
404	register struct slpquehead *qp;
405	register struct thread *td;
406	struct thread *ntd;
407	struct proc *p;
408
409	mtx_lock_spin(&sched_lock);
410	qp = &slpque[LOOKUP(ident)];
411restart:
412	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
413		ntd = TAILQ_NEXT(td, td_slpq);
414		if (td->td_wchan == ident) {
415			unsleep(td);
416			TD_CLR_SLEEPING(td);
417			setrunnable(td);
418			p = td->td_proc;
419			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
420			    td, p->p_pid, p->p_comm);
421			goto restart;
422		}
423	}
424	mtx_unlock_spin(&sched_lock);
425}
426
427/*
428 * Make a process sleeping on the specified identifier runnable.
429 * May wake more than one process if a target process is currently
430 * swapped out.
431 */
432void
433wakeup_one(ident)
434	register void *ident;
435{
436	register struct slpquehead *qp;
437	register struct thread *td;
438	register struct proc *p;
439	struct thread *ntd;
440
441	mtx_lock_spin(&sched_lock);
442	qp = &slpque[LOOKUP(ident)];
443	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
444		ntd = TAILQ_NEXT(td, td_slpq);
445		if (td->td_wchan == ident) {
446			unsleep(td);
447			TD_CLR_SLEEPING(td);
448			setrunnable(td);
449			p = td->td_proc;
450			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
451			    td, p->p_pid, p->p_comm);
452			break;
453		}
454	}
455	mtx_unlock_spin(&sched_lock);
456}
457
458/*
459 * The machine independent parts of mi_switch().
460 */
461void
462mi_switch(void)
463{
464	struct bintime new_switchtime;
465	struct thread *td;
466#if !defined(__alpha__) && !defined(__powerpc__)
467	struct thread *newtd;
468#endif
469	struct proc *p;
470	u_int sched_nest;
471
472	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
473	td = curthread;			/* XXX */
474	p = td->td_proc;		/* XXX */
475	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
476#ifdef INVARIANTS
477	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
478		mtx_assert(&Giant, MA_NOTOWNED);
479#endif
480	KASSERT(td->td_critnest == 1,
481	    ("mi_switch: switch in a critical section"));
482
483	/*
484	 * Compute the amount of time during which the current
485	 * process was running, and add that to its total so far.
486	 */
487	binuptime(&new_switchtime);
488	bintime_add(&p->p_runtime, &new_switchtime);
489	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
490
491#ifdef DDB
492	/*
493	 * Don't perform context switches from the debugger.
494	 */
495	if (db_active) {
496		mtx_unlock_spin(&sched_lock);
497		db_print_backtrace();
498		db_error("Context switches not allowed in the debugger.");
499	}
500#endif
501
502	/*
503	 * Check if the process exceeds its cpu resource allocation.  If
504	 * over max, arrange to kill the process in ast().
505	 */
506	if (p->p_cpulimit != RLIM_INFINITY &&
507	    p->p_runtime.sec > p->p_cpulimit) {
508		p->p_sflag |= PS_XCPU;
509		td->td_flags |= TDF_ASTPENDING;
510	}
511
512	/*
513	 * Finish up stats for outgoing thread.
514	 */
515	cnt.v_swtch++;
516	PCPU_SET(switchtime, new_switchtime);
517	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
518	    p->p_comm);
519	sched_nest = sched_lock.mtx_recurse;
520	if (td->td_proc->p_flag & P_THREADED)
521		thread_switchout(td);
522	sched_switchout(td);
523
524#if !defined(__alpha__) && !defined(__powerpc__)
525	newtd = choosethread();
526	if (td != newtd)
527		cpu_switch(td, newtd);	/* SHAZAM!! */
528#ifdef SWTCH_OPTIM_STATS
529	else
530		stupid_switch++;
531#endif
532#else
533	cpu_switch();		/* SHAZAM!!*/
534#endif
535
536	sched_lock.mtx_recurse = sched_nest;
537	sched_lock.mtx_lock = (uintptr_t)td;
538	sched_switchin(td);
539
540	/*
541	 * Start setting up stats etc. for the incoming thread.
542	 * Similar code in fork_exit() is returned to by cpu_switch()
543	 * in the case of a new thread/process.
544	 */
545	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
546	    p->p_comm);
547	if (PCPU_GET(switchtime.sec) == 0)
548		binuptime(PCPU_PTR(switchtime));
549	PCPU_SET(switchticks, ticks);
550
551	/*
552	 * Call the switchin function while still holding the scheduler lock
553	 * (used by the idlezero code and the general page-zeroing code)
554	 */
555	if (td->td_switchin)
556		td->td_switchin();
557
558	/*
559	 * If the last thread was exiting, finish cleaning it up.
560	 */
561	if ((td = PCPU_GET(deadthread))) {
562		PCPU_SET(deadthread, NULL);
563		thread_stash(td);
564	}
565}
566
567/*
568 * Change process state to be runnable,
569 * placing it on the run queue if it is in memory,
570 * and awakening the swapper if it isn't in memory.
571 */
572void
573setrunnable(struct thread *td)
574{
575	struct proc *p = td->td_proc;
576
577	mtx_assert(&sched_lock, MA_OWNED);
578	switch (p->p_state) {
579	case PRS_ZOMBIE:
580		panic("setrunnable(1)");
581	default:
582		break;
583	}
584	switch (td->td_state) {
585	case TDS_RUNNING:
586	case TDS_RUNQ:
587		return;
588	case TDS_INHIBITED:
589		/*
590		 * If we are only inhibited because we are swapped out
591		 * then arange to swap in this process. Otherwise just return.
592		 */
593		if (td->td_inhibitors != TDI_SWAPPED)
594			return;
595		/* XXX: intentional fall-through ? */
596	case TDS_CAN_RUN:
597		break;
598	default:
599		printf("state is 0x%x", td->td_state);
600		panic("setrunnable(2)");
601	}
602	if ((p->p_sflag & PS_INMEM) == 0) {
603		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
604			p->p_sflag |= PS_SWAPINREQ;
605			wakeup(&proc0);
606		}
607	} else
608		sched_wakeup(td);
609}
610
611/*
612 * Compute a tenex style load average of a quantity on
613 * 1, 5 and 15 minute intervals.
614 * XXXKSE   Needs complete rewrite when correct info is available.
615 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
616 */
617static void
618loadav(void *arg)
619{
620	int i, nrun;
621	struct loadavg *avg;
622	struct proc *p;
623	struct thread *td;
624
625	avg = &averunnable;
626	sx_slock(&allproc_lock);
627	nrun = 0;
628	FOREACH_PROC_IN_SYSTEM(p) {
629		FOREACH_THREAD_IN_PROC(p, td) {
630			switch (td->td_state) {
631			case TDS_RUNQ:
632			case TDS_RUNNING:
633				if ((p->p_flag & P_NOLOAD) != 0)
634					goto nextproc;
635				nrun++; /* XXXKSE */
636			default:
637				break;
638			}
639nextproc:
640			continue;
641		}
642	}
643	sx_sunlock(&allproc_lock);
644	for (i = 0; i < 3; i++)
645		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
646		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
647
648	/*
649	 * Schedule the next update to occur after 5 seconds, but add a
650	 * random variation to avoid synchronisation with processes that
651	 * run at regular intervals.
652	 */
653	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
654	    loadav, NULL);
655}
656
657static void
658lboltcb(void *arg)
659{
660	wakeup(&lbolt);
661	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
662}
663
664/* ARGSUSED */
665static void
666sched_setup(dummy)
667	void *dummy;
668{
669	callout_init(&loadav_callout, 0);
670	callout_init(&lbolt_callout, 1);
671
672	/* Kick off timeout driven events by calling first time. */
673	loadav(NULL);
674	lboltcb(NULL);
675}
676
677/*
678 * General purpose yield system call
679 */
680int
681yield(struct thread *td, struct yield_args *uap)
682{
683	struct ksegrp *kg = td->td_ksegrp;
684
685	mtx_assert(&Giant, MA_NOTOWNED);
686	mtx_lock_spin(&sched_lock);
687	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
688	sched_prio(td, PRI_MAX_TIMESHARE);
689	mi_switch();
690	mtx_unlock_spin(&sched_lock);
691	td->td_retval[0] = 0;
692
693	return (0);
694}
695
696