kern_synch.c revision 115539
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 115539 2003-05-31 20:13:58Z phk $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44#ifdef __i386__
45#include "opt_swtch.h"
46#endif
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resourcevar.h>
57#include <sys/sched.h>
58#include <sys/signalvar.h>
59#include <sys/smp.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/sysproto.h>
63#include <sys/vmmeter.h>
64#ifdef DDB
65#include <ddb/ddb.h>
66#endif
67#ifdef KTRACE
68#include <sys/uio.h>
69#include <sys/ktrace.h>
70#endif
71
72#include <machine/cpu.h>
73#ifdef SWTCH_OPTIM_STATS
74#include <machine/md_var.h>
75#endif
76
77static void sched_setup(void *dummy);
78SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
79
80int	hogticks;
81int	lbolt;
82
83static struct callout loadav_callout;
84static struct callout lbolt_callout;
85
86struct loadavg averunnable =
87	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
88/*
89 * Constants for averages over 1, 5, and 15 minutes
90 * when sampling at 5 second intervals.
91 */
92static fixpt_t cexp[3] = {
93	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
94	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
95	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
96};
97
98/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
99static int      fscale __unused = FSCALE;
100SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
101
102static void	endtsleep(void *);
103static void	loadav(void *arg);
104static void	lboltcb(void *arg);
105
106/*
107 * We're only looking at 7 bits of the address; everything is
108 * aligned to 4, lots of things are aligned to greater powers
109 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
110 */
111#define TABLESIZE	128
112static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
113#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
114
115void
116sleepinit(void)
117{
118	int i;
119
120	hogticks = (hz / 10) * 2;	/* Default only. */
121	for (i = 0; i < TABLESIZE; i++)
122		TAILQ_INIT(&slpque[i]);
123}
124
125/*
126 * General sleep call.  Suspends the current process until a wakeup is
127 * performed on the specified identifier.  The process will then be made
128 * runnable with the specified priority.  Sleeps at most timo/hz seconds
129 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
130 * before and after sleeping, else signals are not checked.  Returns 0 if
131 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
132 * signal needs to be delivered, ERESTART is returned if the current system
133 * call should be restarted if possible, and EINTR is returned if the system
134 * call should be interrupted by the signal (return EINTR).
135 *
136 * The mutex argument is exited before the caller is suspended, and
137 * entered before msleep returns.  If priority includes the PDROP
138 * flag the mutex is not entered before returning.
139 */
140
141int
142msleep(ident, mtx, priority, wmesg, timo)
143	void *ident;
144	struct mtx *mtx;
145	int priority, timo;
146	const char *wmesg;
147{
148	struct thread *td = curthread;
149	struct proc *p = td->td_proc;
150	int sig, catch = priority & PCATCH;
151	int rval = 0;
152	WITNESS_SAVE_DECL(mtx);
153
154#ifdef KTRACE
155	if (KTRPOINT(td, KTR_CSW))
156		ktrcsw(1, 0);
157#endif
158	/* XXX: mtx == NULL ?? */
159	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
160	    "Sleeping on \"%s\"", wmesg);
161	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
162	    ("sleeping without a mutex"));
163	/*
164	 * If we are capable of async syscalls and there isn't already
165	 * another one ready to return, start a new thread
166	 * and queue it as ready to run. Note that there is danger here
167	 * because we need to make sure that we don't sleep allocating
168	 * the thread (recursion here might be bad).
169	 */
170	mtx_lock_spin(&sched_lock);
171	if (p->p_flag & P_THREADED || p->p_numthreads > 1) {
172		/*
173		 * Just don't bother if we are exiting
174		 * and not the exiting thread or thread was marked as
175		 * interrupted.
176		 */
177		if (catch &&
178		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
179		     (td->td_flags & TDF_INTERRUPT))) {
180			td->td_flags &= ~TDF_INTERRUPT;
181			mtx_unlock_spin(&sched_lock);
182			return (EINTR);
183		}
184	}
185	if (cold ) {
186		/*
187		 * During autoconfiguration, just give interrupts
188		 * a chance, then just return.
189		 * Don't run any other procs or panic below,
190		 * in case this is the idle process and already asleep.
191		 */
192		if (mtx != NULL && priority & PDROP)
193			mtx_unlock(mtx);
194		mtx_unlock_spin(&sched_lock);
195		return (0);
196	}
197
198	DROP_GIANT();
199
200	if (mtx != NULL) {
201		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
202		WITNESS_SAVE(&mtx->mtx_object, mtx);
203		mtx_unlock(mtx);
204		if (priority & PDROP)
205			mtx = NULL;
206	}
207
208	KASSERT(p != NULL, ("msleep1"));
209	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
210
211	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
212	    td, p->p_pid, p->p_comm, wmesg, ident);
213
214	td->td_wchan = ident;
215	td->td_wmesg = wmesg;
216	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
217	TD_SET_ON_SLEEPQ(td);
218	if (timo)
219		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
220	/*
221	 * We put ourselves on the sleep queue and start our timeout
222	 * before calling thread_suspend_check, as we could stop there, and
223	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
224	 * without resuming us, thus we must be ready for sleep
225	 * when cursig is called.  If the wakeup happens while we're
226	 * stopped, td->td_wchan will be 0 upon return from cursig.
227	 */
228	if (catch) {
229		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
230		    p->p_pid, p->p_comm);
231		td->td_flags |= TDF_SINTR;
232		mtx_unlock_spin(&sched_lock);
233		PROC_LOCK(p);
234		mtx_lock(&p->p_sigacts->ps_mtx);
235		sig = cursig(td);
236		mtx_unlock(&p->p_sigacts->ps_mtx);
237		if (sig == 0 && thread_suspend_check(1))
238			sig = SIGSTOP;
239		mtx_lock_spin(&sched_lock);
240		PROC_UNLOCK(p);
241		if (sig != 0) {
242			if (TD_ON_SLEEPQ(td))
243				unsleep(td);
244		} else if (!TD_ON_SLEEPQ(td))
245			catch = 0;
246	} else
247		sig = 0;
248
249	/*
250	 * Let the scheduler know we're about to voluntarily go to sleep.
251	 */
252	sched_sleep(td, priority & PRIMASK);
253
254	if (TD_ON_SLEEPQ(td)) {
255		p->p_stats->p_ru.ru_nvcsw++;
256		TD_SET_SLEEPING(td);
257		mi_switch();
258	}
259	/*
260	 * We're awake from voluntary sleep.
261	 */
262	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
263	    p->p_comm);
264	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
265	td->td_flags &= ~TDF_SINTR;
266	if (td->td_flags & TDF_TIMEOUT) {
267		td->td_flags &= ~TDF_TIMEOUT;
268		if (sig == 0)
269			rval = EWOULDBLOCK;
270	} else if (td->td_flags & TDF_TIMOFAIL) {
271		td->td_flags &= ~TDF_TIMOFAIL;
272	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
273		/*
274		 * This isn't supposed to be pretty.  If we are here, then
275		 * the endtsleep() callout is currently executing on another
276		 * CPU and is either spinning on the sched_lock or will be
277		 * soon.  If we don't synchronize here, there is a chance
278		 * that this process may msleep() again before the callout
279		 * has a chance to run and the callout may end up waking up
280		 * the wrong msleep().  Yuck.
281		 */
282		TD_SET_SLEEPING(td);
283		p->p_stats->p_ru.ru_nivcsw++;
284		mi_switch();
285		td->td_flags &= ~TDF_TIMOFAIL;
286	}
287	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
288	    (rval == 0)) {
289		td->td_flags &= ~TDF_INTERRUPT;
290		rval = EINTR;
291	}
292	mtx_unlock_spin(&sched_lock);
293
294	if (rval == 0 && catch) {
295		PROC_LOCK(p);
296		/* XXX: shouldn't we always be calling cursig() */
297		mtx_lock(&p->p_sigacts->ps_mtx);
298		if (sig != 0 || (sig = cursig(td))) {
299			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
300				rval = EINTR;
301			else
302				rval = ERESTART;
303		}
304		mtx_unlock(&p->p_sigacts->ps_mtx);
305		PROC_UNLOCK(p);
306	}
307#ifdef KTRACE
308	if (KTRPOINT(td, KTR_CSW))
309		ktrcsw(0, 0);
310#endif
311	PICKUP_GIANT();
312	if (mtx != NULL) {
313		mtx_lock(mtx);
314		WITNESS_RESTORE(&mtx->mtx_object, mtx);
315	}
316	return (rval);
317}
318
319/*
320 * Implement timeout for msleep()
321 *
322 * If process hasn't been awakened (wchan non-zero),
323 * set timeout flag and undo the sleep.  If proc
324 * is stopped, just unsleep so it will remain stopped.
325 * MP-safe, called without the Giant mutex.
326 */
327static void
328endtsleep(arg)
329	void *arg;
330{
331	register struct thread *td = arg;
332
333	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
334	    td, td->td_proc->p_pid, td->td_proc->p_comm);
335	mtx_lock_spin(&sched_lock);
336	/*
337	 * This is the other half of the synchronization with msleep()
338	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
339	 * race and just need to put the process back on the runqueue.
340	 */
341	if (TD_ON_SLEEPQ(td)) {
342		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
343		TD_CLR_ON_SLEEPQ(td);
344		td->td_flags |= TDF_TIMEOUT;
345		td->td_wmesg = NULL;
346	} else {
347		td->td_flags |= TDF_TIMOFAIL;
348	}
349	TD_CLR_SLEEPING(td);
350	setrunnable(td);
351	mtx_unlock_spin(&sched_lock);
352}
353
354/*
355 * Abort a thread, as if an interrupt had occured.  Only abort
356 * interruptable waits (unfortunatly it isn't only safe to abort others).
357 * This is about identical to cv_abort().
358 * Think about merging them?
359 * Also, whatever the signal code does...
360 */
361void
362abortsleep(struct thread *td)
363{
364
365	mtx_assert(&sched_lock, MA_OWNED);
366	/*
367	 * If the TDF_TIMEOUT flag is set, just leave. A
368	 * timeout is scheduled anyhow.
369	 */
370	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
371		if (TD_ON_SLEEPQ(td)) {
372			unsleep(td);
373			TD_CLR_SLEEPING(td);
374			setrunnable(td);
375		}
376	}
377}
378
379/*
380 * Remove a process from its wait queue
381 */
382void
383unsleep(struct thread *td)
384{
385
386	mtx_lock_spin(&sched_lock);
387	if (TD_ON_SLEEPQ(td)) {
388		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
389		TD_CLR_ON_SLEEPQ(td);
390		td->td_wmesg = NULL;
391	}
392	mtx_unlock_spin(&sched_lock);
393}
394
395/*
396 * Make all processes sleeping on the specified identifier runnable.
397 */
398void
399wakeup(ident)
400	register void *ident;
401{
402	register struct slpquehead *qp;
403	register struct thread *td;
404	struct thread *ntd;
405	struct proc *p;
406
407	mtx_lock_spin(&sched_lock);
408	qp = &slpque[LOOKUP(ident)];
409restart:
410	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
411		ntd = TAILQ_NEXT(td, td_slpq);
412		if (td->td_wchan == ident) {
413			unsleep(td);
414			TD_CLR_SLEEPING(td);
415			setrunnable(td);
416			p = td->td_proc;
417			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
418			    td, p->p_pid, p->p_comm);
419			goto restart;
420		}
421	}
422	mtx_unlock_spin(&sched_lock);
423}
424
425/*
426 * Make a process sleeping on the specified identifier runnable.
427 * May wake more than one process if a target process is currently
428 * swapped out.
429 */
430void
431wakeup_one(ident)
432	register void *ident;
433{
434	register struct slpquehead *qp;
435	register struct thread *td;
436	register struct proc *p;
437	struct thread *ntd;
438
439	mtx_lock_spin(&sched_lock);
440	qp = &slpque[LOOKUP(ident)];
441	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
442		ntd = TAILQ_NEXT(td, td_slpq);
443		if (td->td_wchan == ident) {
444			unsleep(td);
445			TD_CLR_SLEEPING(td);
446			setrunnable(td);
447			p = td->td_proc;
448			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
449			    td, p->p_pid, p->p_comm);
450			break;
451		}
452	}
453	mtx_unlock_spin(&sched_lock);
454}
455
456/*
457 * The machine independent parts of mi_switch().
458 */
459void
460mi_switch(void)
461{
462	struct bintime new_switchtime;
463	struct thread *td;
464#if !defined(__alpha__) && !defined(__powerpc__)
465	struct thread *newtd;
466#endif
467	struct proc *p;
468	u_int sched_nest;
469
470	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
471	td = curthread;			/* XXX */
472	p = td->td_proc;		/* XXX */
473	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
474#ifdef INVARIANTS
475	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
476		mtx_assert(&Giant, MA_NOTOWNED);
477#endif
478	KASSERT(td->td_critnest == 1,
479	    ("mi_switch: switch in a critical section"));
480
481	/*
482	 * Compute the amount of time during which the current
483	 * process was running, and add that to its total so far.
484	 */
485	binuptime(&new_switchtime);
486	bintime_add(&p->p_runtime, &new_switchtime);
487	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
488
489#ifdef DDB
490	/*
491	 * Don't perform context switches from the debugger.
492	 */
493	if (db_active) {
494		mtx_unlock_spin(&sched_lock);
495		db_print_backtrace();
496		db_error("Context switches not allowed in the debugger.");
497	}
498#endif
499
500	/*
501	 * Check if the process exceeds its cpu resource allocation.  If
502	 * over max, arrange to kill the process in ast().
503	 */
504	if (p->p_cpulimit != RLIM_INFINITY &&
505	    p->p_runtime.sec > p->p_cpulimit) {
506		p->p_sflag |= PS_XCPU;
507		td->td_flags |= TDF_ASTPENDING;
508	}
509
510	/*
511	 * Finish up stats for outgoing thread.
512	 */
513	cnt.v_swtch++;
514	PCPU_SET(switchtime, new_switchtime);
515	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
516	    p->p_comm);
517	sched_nest = sched_lock.mtx_recurse;
518	if (td->td_proc->p_flag & P_THREADED)
519		thread_switchout(td);
520	sched_switchout(td);
521
522#if !defined(__alpha__) && !defined(__powerpc__)
523	newtd = choosethread();
524	if (td != newtd)
525		cpu_switch(td, newtd);	/* SHAZAM!! */
526#ifdef SWTCH_OPTIM_STATS
527	else
528		stupid_switch++;
529#endif
530#else
531	cpu_switch();		/* SHAZAM!!*/
532#endif
533
534	sched_lock.mtx_recurse = sched_nest;
535	sched_lock.mtx_lock = (uintptr_t)td;
536	sched_switchin(td);
537
538	/*
539	 * Start setting up stats etc. for the incoming thread.
540	 * Similar code in fork_exit() is returned to by cpu_switch()
541	 * in the case of a new thread/process.
542	 */
543	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
544	    p->p_comm);
545	if (PCPU_GET(switchtime.sec) == 0)
546		binuptime(PCPU_PTR(switchtime));
547	PCPU_SET(switchticks, ticks);
548
549	/*
550	 * Call the switchin function while still holding the scheduler lock
551	 * (used by the idlezero code and the general page-zeroing code)
552	 */
553	if (td->td_switchin)
554		td->td_switchin();
555
556	/*
557	 * If the last thread was exiting, finish cleaning it up.
558	 */
559	if ((td = PCPU_GET(deadthread))) {
560		PCPU_SET(deadthread, NULL);
561		thread_stash(td);
562	}
563}
564
565/*
566 * Change process state to be runnable,
567 * placing it on the run queue if it is in memory,
568 * and awakening the swapper if it isn't in memory.
569 */
570void
571setrunnable(struct thread *td)
572{
573	struct proc *p = td->td_proc;
574
575	mtx_assert(&sched_lock, MA_OWNED);
576	switch (p->p_state) {
577	case PRS_ZOMBIE:
578		panic("setrunnable(1)");
579	default:
580		break;
581	}
582	switch (td->td_state) {
583	case TDS_RUNNING:
584	case TDS_RUNQ:
585		return;
586	case TDS_INHIBITED:
587		/*
588		 * If we are only inhibited because we are swapped out
589		 * then arange to swap in this process. Otherwise just return.
590		 */
591		if (td->td_inhibitors != TDI_SWAPPED)
592			return;
593		/* XXX: intentional fall-through ? */
594	case TDS_CAN_RUN:
595		break;
596	default:
597		printf("state is 0x%x", td->td_state);
598		panic("setrunnable(2)");
599	}
600	if ((p->p_sflag & PS_INMEM) == 0) {
601		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
602			p->p_sflag |= PS_SWAPINREQ;
603			wakeup(&proc0);
604		}
605	} else
606		sched_wakeup(td);
607}
608
609/*
610 * Compute a tenex style load average of a quantity on
611 * 1, 5 and 15 minute intervals.
612 * XXXKSE   Needs complete rewrite when correct info is available.
613 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
614 */
615static void
616loadav(void *arg)
617{
618	int i, nrun;
619	struct loadavg *avg;
620	struct proc *p;
621	struct thread *td;
622
623	avg = &averunnable;
624	sx_slock(&allproc_lock);
625	nrun = 0;
626	FOREACH_PROC_IN_SYSTEM(p) {
627		FOREACH_THREAD_IN_PROC(p, td) {
628			switch (td->td_state) {
629			case TDS_RUNQ:
630			case TDS_RUNNING:
631				if ((p->p_flag & P_NOLOAD) != 0)
632					goto nextproc;
633				nrun++; /* XXXKSE */
634			default:
635				break;
636			}
637nextproc:
638			continue;
639		}
640	}
641	sx_sunlock(&allproc_lock);
642	for (i = 0; i < 3; i++)
643		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
644		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
645
646	/*
647	 * Schedule the next update to occur after 5 seconds, but add a
648	 * random variation to avoid synchronisation with processes that
649	 * run at regular intervals.
650	 */
651	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
652	    loadav, NULL);
653}
654
655static void
656lboltcb(void *arg)
657{
658	wakeup(&lbolt);
659	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
660}
661
662/* ARGSUSED */
663static void
664sched_setup(dummy)
665	void *dummy;
666{
667	callout_init(&loadav_callout, 0);
668	callout_init(&lbolt_callout, 1);
669
670	/* Kick off timeout driven events by calling first time. */
671	loadav(NULL);
672	lboltcb(NULL);
673}
674
675/*
676 * General purpose yield system call
677 */
678int
679yield(struct thread *td, struct yield_args *uap)
680{
681	struct ksegrp *kg = td->td_ksegrp;
682
683	mtx_assert(&Giant, MA_NOTOWNED);
684	mtx_lock_spin(&sched_lock);
685	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
686	sched_prio(td, PRI_MAX_TIMESHARE);
687	mi_switch();
688	mtx_unlock_spin(&sched_lock);
689	td->td_retval[0] = 0;
690
691	return (0);
692}
693
694