kern_synch.c revision 114435
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 114435 2003-05-01 17:05:24Z jhb $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44#ifdef __i386__
45#include "opt_swtch.h"
46#endif
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resourcevar.h>
57#include <sys/sched.h>
58#include <sys/signalvar.h>
59#include <sys/smp.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/sysproto.h>
63#include <sys/vmmeter.h>
64#ifdef DDB
65#include <ddb/ddb.h>
66#endif
67#ifdef KTRACE
68#include <sys/uio.h>
69#include <sys/ktrace.h>
70#endif
71
72#include <machine/cpu.h>
73#ifdef SWTCH_OPTIM_STATS
74#include <machine/md_var.h>
75#endif
76
77static void sched_setup(void *dummy);
78SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
79
80int	hogticks;
81int	lbolt;
82
83static struct callout loadav_callout;
84static struct callout lbolt_callout;
85
86struct loadavg averunnable =
87	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
88/*
89 * Constants for averages over 1, 5, and 15 minutes
90 * when sampling at 5 second intervals.
91 */
92static fixpt_t cexp[3] = {
93	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
94	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
95	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
96};
97
98/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
99static int      fscale __unused = FSCALE;
100SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
101
102static void	endtsleep(void *);
103static void	loadav(void *arg);
104static void	lboltcb(void *arg);
105
106/*
107 * We're only looking at 7 bits of the address; everything is
108 * aligned to 4, lots of things are aligned to greater powers
109 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
110 */
111#define TABLESIZE	128
112static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
113#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
114
115void
116sleepinit(void)
117{
118	int i;
119
120	hogticks = (hz / 10) * 2;	/* Default only. */
121	for (i = 0; i < TABLESIZE; i++)
122		TAILQ_INIT(&slpque[i]);
123}
124
125/*
126 * General sleep call.  Suspends the current process until a wakeup is
127 * performed on the specified identifier.  The process will then be made
128 * runnable with the specified priority.  Sleeps at most timo/hz seconds
129 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
130 * before and after sleeping, else signals are not checked.  Returns 0 if
131 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
132 * signal needs to be delivered, ERESTART is returned if the current system
133 * call should be restarted if possible, and EINTR is returned if the system
134 * call should be interrupted by the signal (return EINTR).
135 *
136 * The mutex argument is exited before the caller is suspended, and
137 * entered before msleep returns.  If priority includes the PDROP
138 * flag the mutex is not entered before returning.
139 */
140
141int
142msleep(ident, mtx, priority, wmesg, timo)
143	void *ident;
144	struct mtx *mtx;
145	int priority, timo;
146	const char *wmesg;
147{
148	struct thread *td = curthread;
149	struct proc *p = td->td_proc;
150	int sig, catch = priority & PCATCH;
151	int rval = 0;
152	WITNESS_SAVE_DECL(mtx);
153
154#ifdef KTRACE
155	if (KTRPOINT(td, KTR_CSW))
156		ktrcsw(1, 0);
157#endif
158	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
159	    "Sleeping on \"%s\"", wmesg);
160	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
161	    ("sleeping without a mutex"));
162	/*
163	 * If we are capable of async syscalls and there isn't already
164	 * another one ready to return, start a new thread
165	 * and queue it as ready to run. Note that there is danger here
166	 * because we need to make sure that we don't sleep allocating
167	 * the thread (recursion here might be bad).
168	 */
169	mtx_lock_spin(&sched_lock);
170	if (p->p_flag & P_THREADED || p->p_numthreads > 1) {
171		/*
172		 * Just don't bother if we are exiting
173		 * and not the exiting thread or thread was marked as
174		 * interrupted.
175		 */
176		if (catch &&
177		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
178		     (td->td_flags & TDF_INTERRUPT))) {
179			td->td_flags &= ~TDF_INTERRUPT;
180			mtx_unlock_spin(&sched_lock);
181			return (EINTR);
182		}
183	}
184	if (cold ) {
185		/*
186		 * During autoconfiguration, just give interrupts
187		 * a chance, then just return.
188		 * Don't run any other procs or panic below,
189		 * in case this is the idle process and already asleep.
190		 */
191		if (mtx != NULL && priority & PDROP)
192			mtx_unlock(mtx);
193		mtx_unlock_spin(&sched_lock);
194		return (0);
195	}
196
197	DROP_GIANT();
198
199	if (mtx != NULL) {
200		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
201		WITNESS_SAVE(&mtx->mtx_object, mtx);
202		mtx_unlock(mtx);
203		if (priority & PDROP)
204			mtx = NULL;
205	}
206
207	KASSERT(p != NULL, ("msleep1"));
208	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
209
210	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
211	    td, p->p_pid, p->p_comm, wmesg, ident);
212
213	td->td_wchan = ident;
214	td->td_wmesg = wmesg;
215	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
216	TD_SET_ON_SLEEPQ(td);
217	if (timo)
218		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
219	/*
220	 * We put ourselves on the sleep queue and start our timeout
221	 * before calling thread_suspend_check, as we could stop there, and
222	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
223	 * without resuming us, thus we must be ready for sleep
224	 * when cursig is called.  If the wakeup happens while we're
225	 * stopped, td->td_wchan will be 0 upon return from cursig.
226	 */
227	if (catch) {
228		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
229		    p->p_pid, p->p_comm);
230		td->td_flags |= TDF_SINTR;
231		mtx_unlock_spin(&sched_lock);
232		PROC_LOCK(p);
233		sig = cursig(td);
234		if (sig == 0 && thread_suspend_check(1))
235			sig = SIGSTOP;
236		mtx_lock_spin(&sched_lock);
237		PROC_UNLOCK(p);
238		if (sig != 0) {
239			if (TD_ON_SLEEPQ(td))
240				unsleep(td);
241		} else if (!TD_ON_SLEEPQ(td))
242			catch = 0;
243	} else
244		sig = 0;
245
246	/*
247	 * Let the scheduler know we're about to voluntarily go to sleep.
248	 */
249	sched_sleep(td, priority & PRIMASK);
250
251	if (TD_ON_SLEEPQ(td)) {
252		p->p_stats->p_ru.ru_nvcsw++;
253		TD_SET_SLEEPING(td);
254		mi_switch();
255	}
256	/*
257	 * We're awake from voluntary sleep.
258	 */
259	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
260	    p->p_comm);
261	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
262	td->td_flags &= ~TDF_SINTR;
263	if (td->td_flags & TDF_TIMEOUT) {
264		td->td_flags &= ~TDF_TIMEOUT;
265		if (sig == 0)
266			rval = EWOULDBLOCK;
267	} else if (td->td_flags & TDF_TIMOFAIL) {
268		td->td_flags &= ~TDF_TIMOFAIL;
269	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
270		/*
271		 * This isn't supposed to be pretty.  If we are here, then
272		 * the endtsleep() callout is currently executing on another
273		 * CPU and is either spinning on the sched_lock or will be
274		 * soon.  If we don't synchronize here, there is a chance
275		 * that this process may msleep() again before the callout
276		 * has a chance to run and the callout may end up waking up
277		 * the wrong msleep().  Yuck.
278		 */
279		TD_SET_SLEEPING(td);
280		p->p_stats->p_ru.ru_nivcsw++;
281		mi_switch();
282		td->td_flags &= ~TDF_TIMOFAIL;
283	}
284	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
285	    (rval == 0)) {
286		td->td_flags &= ~TDF_INTERRUPT;
287		rval = EINTR;
288	}
289	mtx_unlock_spin(&sched_lock);
290
291	if (rval == 0 && catch) {
292		PROC_LOCK(p);
293		/* XXX: shouldn't we always be calling cursig() */
294		if (sig != 0 || (sig = cursig(td))) {
295			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
296				rval = EINTR;
297			else
298				rval = ERESTART;
299		}
300		PROC_UNLOCK(p);
301	}
302#ifdef KTRACE
303	if (KTRPOINT(td, KTR_CSW))
304		ktrcsw(0, 0);
305#endif
306	PICKUP_GIANT();
307	if (mtx != NULL) {
308		mtx_lock(mtx);
309		WITNESS_RESTORE(&mtx->mtx_object, mtx);
310	}
311	return (rval);
312}
313
314/*
315 * Implement timeout for msleep()
316 *
317 * If process hasn't been awakened (wchan non-zero),
318 * set timeout flag and undo the sleep.  If proc
319 * is stopped, just unsleep so it will remain stopped.
320 * MP-safe, called without the Giant mutex.
321 */
322static void
323endtsleep(arg)
324	void *arg;
325{
326	register struct thread *td = arg;
327
328	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
329	    td, td->td_proc->p_pid, td->td_proc->p_comm);
330	mtx_lock_spin(&sched_lock);
331	/*
332	 * This is the other half of the synchronization with msleep()
333	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
334	 * race and just need to put the process back on the runqueue.
335	 */
336	if (TD_ON_SLEEPQ(td)) {
337		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
338		TD_CLR_ON_SLEEPQ(td);
339		td->td_flags |= TDF_TIMEOUT;
340		td->td_wmesg = NULL;
341	} else {
342		td->td_flags |= TDF_TIMOFAIL;
343	}
344	TD_CLR_SLEEPING(td);
345	setrunnable(td);
346	mtx_unlock_spin(&sched_lock);
347}
348
349/*
350 * Abort a thread, as if an interrupt had occured.  Only abort
351 * interruptable waits (unfortunatly it isn't only safe to abort others).
352 * This is about identical to cv_abort().
353 * Think about merging them?
354 * Also, whatever the signal code does...
355 */
356void
357abortsleep(struct thread *td)
358{
359
360	mtx_assert(&sched_lock, MA_OWNED);
361	/*
362	 * If the TDF_TIMEOUT flag is set, just leave. A
363	 * timeout is scheduled anyhow.
364	 */
365	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
366		if (TD_ON_SLEEPQ(td)) {
367			unsleep(td);
368			TD_CLR_SLEEPING(td);
369			setrunnable(td);
370		}
371	}
372}
373
374/*
375 * Remove a process from its wait queue
376 */
377void
378unsleep(struct thread *td)
379{
380
381	mtx_lock_spin(&sched_lock);
382	if (TD_ON_SLEEPQ(td)) {
383		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
384		TD_CLR_ON_SLEEPQ(td);
385		td->td_wmesg = NULL;
386	}
387	mtx_unlock_spin(&sched_lock);
388}
389
390/*
391 * Make all processes sleeping on the specified identifier runnable.
392 */
393void
394wakeup(ident)
395	register void *ident;
396{
397	register struct slpquehead *qp;
398	register struct thread *td;
399	struct thread *ntd;
400	struct proc *p;
401
402	mtx_lock_spin(&sched_lock);
403	qp = &slpque[LOOKUP(ident)];
404restart:
405	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
406		ntd = TAILQ_NEXT(td, td_slpq);
407		if (td->td_wchan == ident) {
408			unsleep(td);
409			TD_CLR_SLEEPING(td);
410			setrunnable(td);
411			p = td->td_proc;
412			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
413			    td, p->p_pid, p->p_comm);
414			goto restart;
415		}
416	}
417	mtx_unlock_spin(&sched_lock);
418}
419
420/*
421 * Make a process sleeping on the specified identifier runnable.
422 * May wake more than one process if a target process is currently
423 * swapped out.
424 */
425void
426wakeup_one(ident)
427	register void *ident;
428{
429	register struct slpquehead *qp;
430	register struct thread *td;
431	register struct proc *p;
432	struct thread *ntd;
433
434	mtx_lock_spin(&sched_lock);
435	qp = &slpque[LOOKUP(ident)];
436	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
437		ntd = TAILQ_NEXT(td, td_slpq);
438		if (td->td_wchan == ident) {
439			unsleep(td);
440			TD_CLR_SLEEPING(td);
441			setrunnable(td);
442			p = td->td_proc;
443			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
444			    td, p->p_pid, p->p_comm);
445			break;
446		}
447	}
448	mtx_unlock_spin(&sched_lock);
449}
450
451/*
452 * The machine independent parts of mi_switch().
453 */
454void
455mi_switch(void)
456{
457	struct bintime new_switchtime;
458	struct thread *td;
459#if defined(__i386__) || defined(__sparc64__) || defined(__amd64__)
460	struct thread *newtd;
461#endif
462	struct proc *p;
463	u_int sched_nest;
464
465	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
466	td = curthread;			/* XXX */
467	p = td->td_proc;		/* XXX */
468	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
469#ifdef INVARIANTS
470	if (!TD_ON_LOCK(td) &&
471	    !TD_ON_RUNQ(td) &&
472	    !TD_IS_RUNNING(td))
473		mtx_assert(&Giant, MA_NOTOWNED);
474#endif
475	KASSERT(td->td_critnest == 1,
476	    ("mi_switch: switch in a critical section"));
477
478	/*
479	 * Compute the amount of time during which the current
480	 * process was running, and add that to its total so far.
481	 */
482	binuptime(&new_switchtime);
483	bintime_add(&p->p_runtime, &new_switchtime);
484	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
485
486#ifdef DDB
487	/*
488	 * Don't perform context switches from the debugger.
489	 */
490	if (db_active) {
491		mtx_unlock_spin(&sched_lock);
492		db_print_backtrace();
493		db_error("Context switches not allowed in the debugger.");
494	}
495#endif
496
497	/*
498	 * Check if the process exceeds its cpu resource allocation.  If
499	 * over max, arrange to kill the process in ast().
500	 */
501	if (p->p_cpulimit != RLIM_INFINITY &&
502	    p->p_runtime.sec > p->p_cpulimit) {
503		p->p_sflag |= PS_XCPU;
504		td->td_flags |= TDF_ASTPENDING;
505	}
506
507	/*
508	 * Finish up stats for outgoing thread.
509	 */
510	cnt.v_swtch++;
511	PCPU_SET(switchtime, new_switchtime);
512	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
513	    p->p_comm);
514	sched_nest = sched_lock.mtx_recurse;
515	if (td->td_proc->p_flag & P_THREADED)
516		thread_switchout(td);
517	sched_switchout(td);
518
519#if defined(__i386__) || defined(__sparc64__) || defined(__amd64__)
520	newtd = choosethread();
521	if (td != newtd)
522		cpu_switch(td, newtd);	/* SHAZAM!! */
523#ifdef SWTCH_OPTIM_STATS
524	else
525		stupid_switch++;
526#endif
527#else
528	cpu_switch();		/* SHAZAM!!*/
529#endif
530
531	sched_lock.mtx_recurse = sched_nest;
532	sched_lock.mtx_lock = (uintptr_t)td;
533	sched_switchin(td);
534
535	/*
536	 * Start setting up stats etc. for the incoming thread.
537	 * Similar code in fork_exit() is returned to by cpu_switch()
538	 * in the case of a new thread/process.
539	 */
540	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
541	    p->p_comm);
542	if (PCPU_GET(switchtime.sec) == 0)
543		binuptime(PCPU_PTR(switchtime));
544	PCPU_SET(switchticks, ticks);
545
546	/*
547	 * Call the switchin function while still holding the scheduler lock
548	 * (used by the idlezero code and the general page-zeroing code)
549	 */
550	if (td->td_switchin)
551		td->td_switchin();
552
553	/*
554	 * If the last thread was exiting, finish cleaning it up.
555	 */
556	if ((td = PCPU_GET(deadthread))) {
557		PCPU_SET(deadthread, NULL);
558		thread_stash(td);
559	}
560}
561
562/*
563 * Change process state to be runnable,
564 * placing it on the run queue if it is in memory,
565 * and awakening the swapper if it isn't in memory.
566 */
567void
568setrunnable(struct thread *td)
569{
570	struct proc *p = td->td_proc;
571
572	mtx_assert(&sched_lock, MA_OWNED);
573	switch (p->p_state) {
574	case PRS_ZOMBIE:
575		panic("setrunnable(1)");
576	default:
577		break;
578	}
579	switch (td->td_state) {
580	case TDS_RUNNING:
581	case TDS_RUNQ:
582		return;
583	case TDS_INHIBITED:
584		/*
585		 * If we are only inhibited because we are swapped out
586		 * then arange to swap in this process. Otherwise just return.
587		 */
588		if (td->td_inhibitors != TDI_SWAPPED)
589			return;
590	case TDS_CAN_RUN:
591		break;
592	default:
593		printf("state is 0x%x", td->td_state);
594		panic("setrunnable(2)");
595	}
596	if ((p->p_sflag & PS_INMEM) == 0) {
597		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
598			p->p_sflag |= PS_SWAPINREQ;
599			wakeup(&proc0);
600		}
601	} else
602		sched_wakeup(td);
603}
604
605/*
606 * Compute a tenex style load average of a quantity on
607 * 1, 5 and 15 minute intervals.
608 * XXXKSE   Needs complete rewrite when correct info is available.
609 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
610 */
611static void
612loadav(void *arg)
613{
614	int i, nrun;
615	struct loadavg *avg;
616	struct proc *p;
617	struct thread *td;
618
619	avg = &averunnable;
620	sx_slock(&allproc_lock);
621	nrun = 0;
622	FOREACH_PROC_IN_SYSTEM(p) {
623		FOREACH_THREAD_IN_PROC(p, td) {
624			switch (td->td_state) {
625			case TDS_RUNQ:
626			case TDS_RUNNING:
627				if ((p->p_flag & P_NOLOAD) != 0)
628					goto nextproc;
629				nrun++; /* XXXKSE */
630			default:
631				break;
632			}
633nextproc:
634			continue;
635		}
636	}
637	sx_sunlock(&allproc_lock);
638	for (i = 0; i < 3; i++)
639		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
640		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
641
642	/*
643	 * Schedule the next update to occur after 5 seconds, but add a
644	 * random variation to avoid synchronisation with processes that
645	 * run at regular intervals.
646	 */
647	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
648	    loadav, NULL);
649}
650
651static void
652lboltcb(void *arg)
653{
654	wakeup(&lbolt);
655	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
656}
657
658/* ARGSUSED */
659static void
660sched_setup(dummy)
661	void *dummy;
662{
663	callout_init(&loadav_callout, 0);
664	callout_init(&lbolt_callout, 1);
665
666	/* Kick off timeout driven events by calling first time. */
667	loadav(NULL);
668	lboltcb(NULL);
669}
670
671/*
672 * General purpose yield system call
673 */
674int
675yield(struct thread *td, struct yield_args *uap)
676{
677	struct ksegrp *kg = td->td_ksegrp;
678
679	mtx_assert(&Giant, MA_NOTOWNED);
680	mtx_lock_spin(&sched_lock);
681	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
682	sched_prio(td, PRI_MAX_TIMESHARE);
683	mi_switch();
684	mtx_unlock_spin(&sched_lock);
685	td->td_retval[0] = 0;
686
687	return (0);
688}
689
690