kern_synch.c revision 114336
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 114336 2003-04-30 21:45:03Z peter $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44#ifdef __i386__
45#include "opt_swtch.h"
46#endif
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resourcevar.h>
57#include <sys/sched.h>
58#include <sys/signalvar.h>
59#include <sys/smp.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/sysproto.h>
63#include <sys/vmmeter.h>
64#ifdef DDB
65#include <ddb/ddb.h>
66#endif
67#ifdef KTRACE
68#include <sys/uio.h>
69#include <sys/ktrace.h>
70#endif
71
72#include <machine/cpu.h>
73#ifdef SWTCH_OPTIM_STATS
74#include <machine/md_var.h>
75#endif
76
77static void sched_setup(void *dummy);
78SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
79
80int	hogticks;
81int	lbolt;
82
83static struct callout loadav_callout;
84static struct callout lbolt_callout;
85
86struct loadavg averunnable =
87	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
88/*
89 * Constants for averages over 1, 5, and 15 minutes
90 * when sampling at 5 second intervals.
91 */
92static fixpt_t cexp[3] = {
93	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
94	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
95	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
96};
97
98/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
99static int      fscale __unused = FSCALE;
100SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
101
102static void	endtsleep(void *);
103static void	loadav(void *arg);
104static void	lboltcb(void *arg);
105
106/*
107 * We're only looking at 7 bits of the address; everything is
108 * aligned to 4, lots of things are aligned to greater powers
109 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
110 */
111#define TABLESIZE	128
112static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
113#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
114
115void
116sleepinit(void)
117{
118	int i;
119
120	hogticks = (hz / 10) * 2;	/* Default only. */
121	for (i = 0; i < TABLESIZE; i++)
122		TAILQ_INIT(&slpque[i]);
123}
124
125/*
126 * General sleep call.  Suspends the current process until a wakeup is
127 * performed on the specified identifier.  The process will then be made
128 * runnable with the specified priority.  Sleeps at most timo/hz seconds
129 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
130 * before and after sleeping, else signals are not checked.  Returns 0 if
131 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
132 * signal needs to be delivered, ERESTART is returned if the current system
133 * call should be restarted if possible, and EINTR is returned if the system
134 * call should be interrupted by the signal (return EINTR).
135 *
136 * The mutex argument is exited before the caller is suspended, and
137 * entered before msleep returns.  If priority includes the PDROP
138 * flag the mutex is not entered before returning.
139 */
140
141int
142msleep(ident, mtx, priority, wmesg, timo)
143	void *ident;
144	struct mtx *mtx;
145	int priority, timo;
146	const char *wmesg;
147{
148	struct thread *td = curthread;
149	struct proc *p = td->td_proc;
150	int sig, catch = priority & PCATCH;
151	int rval = 0;
152	WITNESS_SAVE_DECL(mtx);
153
154#ifdef KTRACE
155	if (KTRPOINT(td, KTR_CSW))
156		ktrcsw(1, 0);
157#endif
158	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
159	    "Sleeping on \"%s\"", wmesg);
160	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
161	    ("sleeping without a mutex"));
162	/*
163	 * If we are capable of async syscalls and there isn't already
164	 * another one ready to return, start a new thread
165	 * and queue it as ready to run. Note that there is danger here
166	 * because we need to make sure that we don't sleep allocating
167	 * the thread (recursion here might be bad).
168	 * Hence the TDF_INMSLEEP flag.
169	 */
170	mtx_lock_spin(&sched_lock);
171	if (p->p_flag & P_THREADED || p->p_numthreads > 1) {
172		/*
173		 * Just don't bother if we are exiting
174		 * and not the exiting thread or thread was marked as
175		 * interrupted.
176		 */
177		if (catch &&
178		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
179		     (td->td_flags & TDF_INTERRUPT))) {
180			td->td_flags &= ~TDF_INTERRUPT;
181			mtx_unlock_spin(&sched_lock);
182			return (EINTR);
183		}
184	}
185	if (cold ) {
186		/*
187		 * During autoconfiguration, just give interrupts
188		 * a chance, then just return.
189		 * Don't run any other procs or panic below,
190		 * in case this is the idle process and already asleep.
191		 */
192		if (mtx != NULL && priority & PDROP)
193			mtx_unlock(mtx);
194		mtx_unlock_spin(&sched_lock);
195		return (0);
196	}
197
198	DROP_GIANT();
199
200	if (mtx != NULL) {
201		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
202		WITNESS_SAVE(&mtx->mtx_object, mtx);
203		mtx_unlock(mtx);
204		if (priority & PDROP)
205			mtx = NULL;
206	}
207
208	KASSERT(p != NULL, ("msleep1"));
209	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
210
211	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
212	    td, p->p_pid, p->p_comm, wmesg, ident);
213
214	td->td_wchan = ident;
215	td->td_wmesg = wmesg;
216	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
217	TD_SET_ON_SLEEPQ(td);
218	if (timo)
219		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
220	/*
221	 * We put ourselves on the sleep queue and start our timeout
222	 * before calling thread_suspend_check, as we could stop there, and
223	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
224	 * without resuming us, thus we must be ready for sleep
225	 * when cursig is called.  If the wakeup happens while we're
226	 * stopped, td->td_wchan will be 0 upon return from cursig.
227	 */
228	if (catch) {
229		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
230		    p->p_pid, p->p_comm);
231		td->td_flags |= TDF_SINTR;
232		mtx_unlock_spin(&sched_lock);
233		PROC_LOCK(p);
234		sig = cursig(td);
235		if (sig == 0 && thread_suspend_check(1))
236			sig = SIGSTOP;
237		mtx_lock_spin(&sched_lock);
238		PROC_UNLOCK(p);
239		if (sig != 0) {
240			if (TD_ON_SLEEPQ(td))
241				unsleep(td);
242		} else if (!TD_ON_SLEEPQ(td))
243			catch = 0;
244	} else
245		sig = 0;
246
247	/*
248	 * Let the scheduler know we're about to voluntarily go to sleep.
249	 */
250	sched_sleep(td, priority & PRIMASK);
251
252	if (TD_ON_SLEEPQ(td)) {
253		p->p_stats->p_ru.ru_nvcsw++;
254		TD_SET_SLEEPING(td);
255		mi_switch();
256	}
257	/*
258	 * We're awake from voluntary sleep.
259	 */
260	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
261	    p->p_comm);
262	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
263	td->td_flags &= ~TDF_SINTR;
264	if (td->td_flags & TDF_TIMEOUT) {
265		td->td_flags &= ~TDF_TIMEOUT;
266		if (sig == 0)
267			rval = EWOULDBLOCK;
268	} else if (td->td_flags & TDF_TIMOFAIL) {
269		td->td_flags &= ~TDF_TIMOFAIL;
270	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
271		/*
272		 * This isn't supposed to be pretty.  If we are here, then
273		 * the endtsleep() callout is currently executing on another
274		 * CPU and is either spinning on the sched_lock or will be
275		 * soon.  If we don't synchronize here, there is a chance
276		 * that this process may msleep() again before the callout
277		 * has a chance to run and the callout may end up waking up
278		 * the wrong msleep().  Yuck.
279		 */
280		TD_SET_SLEEPING(td);
281		p->p_stats->p_ru.ru_nivcsw++;
282		mi_switch();
283		td->td_flags &= ~TDF_TIMOFAIL;
284	}
285	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
286	    (rval == 0)) {
287		td->td_flags &= ~TDF_INTERRUPT;
288		rval = EINTR;
289	}
290	mtx_unlock_spin(&sched_lock);
291
292	if (rval == 0 && catch) {
293		PROC_LOCK(p);
294		/* XXX: shouldn't we always be calling cursig() */
295		if (sig != 0 || (sig = cursig(td))) {
296			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
297				rval = EINTR;
298			else
299				rval = ERESTART;
300		}
301		PROC_UNLOCK(p);
302	}
303#ifdef KTRACE
304	if (KTRPOINT(td, KTR_CSW))
305		ktrcsw(0, 0);
306#endif
307	PICKUP_GIANT();
308	if (mtx != NULL) {
309		mtx_lock(mtx);
310		WITNESS_RESTORE(&mtx->mtx_object, mtx);
311	}
312	return (rval);
313}
314
315/*
316 * Implement timeout for msleep()
317 *
318 * If process hasn't been awakened (wchan non-zero),
319 * set timeout flag and undo the sleep.  If proc
320 * is stopped, just unsleep so it will remain stopped.
321 * MP-safe, called without the Giant mutex.
322 */
323static void
324endtsleep(arg)
325	void *arg;
326{
327	register struct thread *td = arg;
328
329	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
330	    td, td->td_proc->p_pid, td->td_proc->p_comm);
331	mtx_lock_spin(&sched_lock);
332	/*
333	 * This is the other half of the synchronization with msleep()
334	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
335	 * race and just need to put the process back on the runqueue.
336	 */
337	if (TD_ON_SLEEPQ(td)) {
338		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
339		TD_CLR_ON_SLEEPQ(td);
340		td->td_flags |= TDF_TIMEOUT;
341		td->td_wmesg = NULL;
342	} else {
343		td->td_flags |= TDF_TIMOFAIL;
344	}
345	TD_CLR_SLEEPING(td);
346	setrunnable(td);
347	mtx_unlock_spin(&sched_lock);
348}
349
350/*
351 * Abort a thread, as if an interrupt had occured.  Only abort
352 * interruptable waits (unfortunatly it isn't only safe to abort others).
353 * This is about identical to cv_abort().
354 * Think about merging them?
355 * Also, whatever the signal code does...
356 */
357void
358abortsleep(struct thread *td)
359{
360
361	mtx_assert(&sched_lock, MA_OWNED);
362	/*
363	 * If the TDF_TIMEOUT flag is set, just leave. A
364	 * timeout is scheduled anyhow.
365	 */
366	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
367		if (TD_ON_SLEEPQ(td)) {
368			unsleep(td);
369			TD_CLR_SLEEPING(td);
370			setrunnable(td);
371		}
372	}
373}
374
375/*
376 * Remove a process from its wait queue
377 */
378void
379unsleep(struct thread *td)
380{
381
382	mtx_lock_spin(&sched_lock);
383	if (TD_ON_SLEEPQ(td)) {
384		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
385		TD_CLR_ON_SLEEPQ(td);
386		td->td_wmesg = NULL;
387	}
388	mtx_unlock_spin(&sched_lock);
389}
390
391/*
392 * Make all processes sleeping on the specified identifier runnable.
393 */
394void
395wakeup(ident)
396	register void *ident;
397{
398	register struct slpquehead *qp;
399	register struct thread *td;
400	struct thread *ntd;
401	struct proc *p;
402
403	mtx_lock_spin(&sched_lock);
404	qp = &slpque[LOOKUP(ident)];
405restart:
406	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
407		ntd = TAILQ_NEXT(td, td_slpq);
408		if (td->td_wchan == ident) {
409			unsleep(td);
410			TD_CLR_SLEEPING(td);
411			setrunnable(td);
412			p = td->td_proc;
413			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
414			    td, p->p_pid, p->p_comm);
415			goto restart;
416		}
417	}
418	mtx_unlock_spin(&sched_lock);
419}
420
421/*
422 * Make a process sleeping on the specified identifier runnable.
423 * May wake more than one process if a target process is currently
424 * swapped out.
425 */
426void
427wakeup_one(ident)
428	register void *ident;
429{
430	register struct slpquehead *qp;
431	register struct thread *td;
432	register struct proc *p;
433	struct thread *ntd;
434
435	mtx_lock_spin(&sched_lock);
436	qp = &slpque[LOOKUP(ident)];
437	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
438		ntd = TAILQ_NEXT(td, td_slpq);
439		if (td->td_wchan == ident) {
440			unsleep(td);
441			TD_CLR_SLEEPING(td);
442			setrunnable(td);
443			p = td->td_proc;
444			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
445			    td, p->p_pid, p->p_comm);
446			break;
447		}
448	}
449	mtx_unlock_spin(&sched_lock);
450}
451
452/*
453 * The machine independent parts of mi_switch().
454 */
455void
456mi_switch(void)
457{
458	struct bintime new_switchtime;
459	struct thread *td;
460#if defined(__i386__) || defined(__sparc64__) || defined(__amd64__)
461	struct thread *newtd;
462#endif
463	struct proc *p;
464	u_int sched_nest;
465
466	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
467	td = curthread;			/* XXX */
468	p = td->td_proc;		/* XXX */
469	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
470#ifdef INVARIANTS
471	if (!TD_ON_LOCK(td) &&
472	    !TD_ON_RUNQ(td) &&
473	    !TD_IS_RUNNING(td))
474		mtx_assert(&Giant, MA_NOTOWNED);
475#endif
476	KASSERT(td->td_critnest == 1,
477	    ("mi_switch: switch in a critical section"));
478
479	/*
480	 * Compute the amount of time during which the current
481	 * process was running, and add that to its total so far.
482	 */
483	binuptime(&new_switchtime);
484	bintime_add(&p->p_runtime, &new_switchtime);
485	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
486
487#ifdef DDB
488	/*
489	 * Don't perform context switches from the debugger.
490	 */
491	if (db_active) {
492		mtx_unlock_spin(&sched_lock);
493		db_print_backtrace();
494		db_error("Context switches not allowed in the debugger.");
495	}
496#endif
497
498	/*
499	 * Check if the process exceeds its cpu resource allocation.  If
500	 * over max, arrange to kill the process in ast().
501	 */
502	if (p->p_cpulimit != RLIM_INFINITY &&
503	    p->p_runtime.sec > p->p_cpulimit) {
504		p->p_sflag |= PS_XCPU;
505		td->td_flags |= TDF_ASTPENDING;
506	}
507
508	/*
509	 * Finish up stats for outgoing thread.
510	 */
511	cnt.v_swtch++;
512	PCPU_SET(switchtime, new_switchtime);
513	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
514	    p->p_comm);
515	sched_nest = sched_lock.mtx_recurse;
516	if (td->td_proc->p_flag & P_THREADED)
517		thread_switchout(td);
518	sched_switchout(td);
519
520#if defined(__i386__) || defined(__sparc64__) || defined(__amd64__)
521	newtd = choosethread();
522	if (td != newtd)
523		cpu_switch(td, newtd);	/* SHAZAM!! */
524#ifdef SWTCH_OPTIM_STATS
525	else
526		stupid_switch++;
527#endif
528#else
529	cpu_switch();		/* SHAZAM!!*/
530#endif
531
532	sched_lock.mtx_recurse = sched_nest;
533	sched_lock.mtx_lock = (uintptr_t)td;
534	sched_switchin(td);
535
536	/*
537	 * Start setting up stats etc. for the incoming thread.
538	 * Similar code in fork_exit() is returned to by cpu_switch()
539	 * in the case of a new thread/process.
540	 */
541	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
542	    p->p_comm);
543	if (PCPU_GET(switchtime.sec) == 0)
544		binuptime(PCPU_PTR(switchtime));
545	PCPU_SET(switchticks, ticks);
546
547	/*
548	 * Call the switchin function while still holding the scheduler lock
549	 * (used by the idlezero code and the general page-zeroing code)
550	 */
551	if (td->td_switchin)
552		td->td_switchin();
553
554	/*
555	 * If the last thread was exiting, finish cleaning it up.
556	 */
557	if ((td = PCPU_GET(deadthread))) {
558		PCPU_SET(deadthread, NULL);
559		thread_stash(td);
560	}
561}
562
563/*
564 * Change process state to be runnable,
565 * placing it on the run queue if it is in memory,
566 * and awakening the swapper if it isn't in memory.
567 */
568void
569setrunnable(struct thread *td)
570{
571	struct proc *p = td->td_proc;
572
573	mtx_assert(&sched_lock, MA_OWNED);
574	switch (p->p_state) {
575	case PRS_ZOMBIE:
576		panic("setrunnable(1)");
577	default:
578		break;
579	}
580	switch (td->td_state) {
581	case TDS_RUNNING:
582	case TDS_RUNQ:
583		return;
584	case TDS_INHIBITED:
585		/*
586		 * If we are only inhibited because we are swapped out
587		 * then arange to swap in this process. Otherwise just return.
588		 */
589		if (td->td_inhibitors != TDI_SWAPPED)
590			return;
591	case TDS_CAN_RUN:
592		break;
593	default:
594		printf("state is 0x%x", td->td_state);
595		panic("setrunnable(2)");
596	}
597	if ((p->p_sflag & PS_INMEM) == 0) {
598		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
599			p->p_sflag |= PS_SWAPINREQ;
600			wakeup(&proc0);
601		}
602	} else
603		sched_wakeup(td);
604}
605
606/*
607 * Compute a tenex style load average of a quantity on
608 * 1, 5 and 15 minute intervals.
609 * XXXKSE   Needs complete rewrite when correct info is available.
610 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
611 */
612static void
613loadav(void *arg)
614{
615	int i, nrun;
616	struct loadavg *avg;
617	struct proc *p;
618	struct thread *td;
619
620	avg = &averunnable;
621	sx_slock(&allproc_lock);
622	nrun = 0;
623	FOREACH_PROC_IN_SYSTEM(p) {
624		FOREACH_THREAD_IN_PROC(p, td) {
625			switch (td->td_state) {
626			case TDS_RUNQ:
627			case TDS_RUNNING:
628				if ((p->p_flag & P_NOLOAD) != 0)
629					goto nextproc;
630				nrun++; /* XXXKSE */
631			default:
632				break;
633			}
634nextproc:
635			continue;
636		}
637	}
638	sx_sunlock(&allproc_lock);
639	for (i = 0; i < 3; i++)
640		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
641		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
642
643	/*
644	 * Schedule the next update to occur after 5 seconds, but add a
645	 * random variation to avoid synchronisation with processes that
646	 * run at regular intervals.
647	 */
648	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
649	    loadav, NULL);
650}
651
652static void
653lboltcb(void *arg)
654{
655	wakeup(&lbolt);
656	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
657}
658
659/* ARGSUSED */
660static void
661sched_setup(dummy)
662	void *dummy;
663{
664	callout_init(&loadav_callout, 0);
665	callout_init(&lbolt_callout, 1);
666
667	/* Kick off timeout driven events by calling first time. */
668	loadav(NULL);
669	lboltcb(NULL);
670}
671
672/*
673 * General purpose yield system call
674 */
675int
676yield(struct thread *td, struct yield_args *uap)
677{
678	struct ksegrp *kg = td->td_ksegrp;
679
680	mtx_assert(&Giant, MA_NOTOWNED);
681	mtx_lock_spin(&sched_lock);
682	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
683	sched_prio(td, PRI_MAX_TIMESHARE);
684	mi_switch();
685	mtx_unlock_spin(&sched_lock);
686	td->td_retval[0] = 0;
687
688	return (0);
689}
690
691