kern_synch.c revision 105911
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 105911 2002-10-25 07:11:12Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef DDB
62#include <ddb/ddb.h>
63#endif
64#ifdef KTRACE
65#include <sys/uio.h>
66#include <sys/ktrace.h>
67#endif
68
69#include <machine/cpu.h>
70
71static void sched_setup(void *dummy);
72SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73
74int	hogticks;
75int	lbolt;
76
77static struct callout loadav_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91static void	endtsleep(void *);
92static void	loadav(void *arg);
93
94/*
95 * We're only looking at 7 bits of the address; everything is
96 * aligned to 4, lots of things are aligned to greater powers
97 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
98 */
99#define TABLESIZE	128
100static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
101#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
102
103void
104sleepinit(void)
105{
106	int i;
107
108	hogticks = (hz / 10) * 2;	/* Default only. */
109	for (i = 0; i < TABLESIZE; i++)
110		TAILQ_INIT(&slpque[i]);
111}
112
113/*
114 * General sleep call.  Suspends the current process until a wakeup is
115 * performed on the specified identifier.  The process will then be made
116 * runnable with the specified priority.  Sleeps at most timo/hz seconds
117 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
118 * before and after sleeping, else signals are not checked.  Returns 0 if
119 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
120 * signal needs to be delivered, ERESTART is returned if the current system
121 * call should be restarted if possible, and EINTR is returned if the system
122 * call should be interrupted by the signal (return EINTR).
123 *
124 * The mutex argument is exited before the caller is suspended, and
125 * entered before msleep returns.  If priority includes the PDROP
126 * flag the mutex is not entered before returning.
127 */
128
129int
130msleep(ident, mtx, priority, wmesg, timo)
131	void *ident;
132	struct mtx *mtx;
133	int priority, timo;
134	const char *wmesg;
135{
136	struct thread *td = curthread;
137	struct proc *p = td->td_proc;
138	int sig, catch = priority & PCATCH;
139	int rval = 0;
140	WITNESS_SAVE_DECL(mtx);
141
142#ifdef KTRACE
143	if (KTRPOINT(td, KTR_CSW))
144		ktrcsw(1, 0);
145#endif
146	WITNESS_SLEEP(0, &mtx->mtx_object);
147	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
148	    ("sleeping without a mutex"));
149	/*
150	 * If we are capable of async syscalls and there isn't already
151	 * another one ready to return, start a new thread
152	 * and queue it as ready to run. Note that there is danger here
153	 * because we need to make sure that we don't sleep allocating
154	 * the thread (recursion here might be bad).
155	 * Hence the TDF_INMSLEEP flag.
156	 */
157	if (p->p_flag & P_KSES) {
158		/*
159		 * Just don't bother if we are exiting
160		 * and not the exiting thread.
161		 */
162		if ((p->p_flag & P_WEXIT) && catch && (p->p_singlethread != td))
163			return (EINTR);
164		mtx_lock_spin(&sched_lock);
165		if ((td->td_flags & (TDF_UNBOUND|TDF_INMSLEEP)) ==
166		    TDF_UNBOUND) {
167			/*
168			 * Arrange for an upcall to be readied.
169			 * it will not actually happen until all
170			 * pending in-kernel work for this KSEGRP
171			 * has been done.
172			 */
173			/* Don't recurse here! */
174			td->td_flags |= TDF_INMSLEEP;
175			thread_schedule_upcall(td, td->td_kse);
176			td->td_flags &= ~TDF_INMSLEEP;
177		}
178	} else {
179		mtx_lock_spin(&sched_lock);
180	}
181	if (cold ) {
182		/*
183		 * During autoconfiguration, just give interrupts
184		 * a chance, then just return.
185		 * Don't run any other procs or panic below,
186		 * in case this is the idle process and already asleep.
187		 */
188		if (mtx != NULL && priority & PDROP)
189			mtx_unlock(mtx);
190		mtx_unlock_spin(&sched_lock);
191		return (0);
192	}
193
194	DROP_GIANT();
195
196	if (mtx != NULL) {
197		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
198		WITNESS_SAVE(&mtx->mtx_object, mtx);
199		mtx_unlock(mtx);
200		if (priority & PDROP)
201			mtx = NULL;
202	}
203
204	KASSERT(p != NULL, ("msleep1"));
205	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
206
207	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
208	    td, p->p_pid, p->p_comm, wmesg, ident);
209
210	td->td_wchan = ident;
211	td->td_wmesg = wmesg;
212	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
213	TD_SET_ON_SLEEPQ(td);
214	if (timo)
215		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
216	/*
217	 * We put ourselves on the sleep queue and start our timeout
218	 * before calling thread_suspend_check, as we could stop there, and
219	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
220	 * without resuming us, thus we must be ready for sleep
221	 * when cursig is called.  If the wakeup happens while we're
222	 * stopped, td->td_wchan will be 0 upon return from cursig.
223	 */
224	if (catch) {
225		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
226		    p->p_pid, p->p_comm);
227		td->td_flags |= TDF_SINTR;
228		mtx_unlock_spin(&sched_lock);
229		PROC_LOCK(p);
230		sig = cursig(td);
231		if (sig == 0 && thread_suspend_check(1))
232			sig = SIGSTOP;
233		mtx_lock_spin(&sched_lock);
234		PROC_UNLOCK(p);
235		if (sig != 0) {
236			if (TD_ON_SLEEPQ(td))
237				unsleep(td);
238		} else if (!TD_ON_SLEEPQ(td))
239			catch = 0;
240	} else
241		sig = 0;
242
243	/*
244	 * Let the scheduler know we're about to voluntarily go to sleep.
245	 */
246	sched_sleep(td, priority & PRIMASK);
247
248	if (TD_ON_SLEEPQ(td)) {
249		p->p_stats->p_ru.ru_nvcsw++;
250		TD_SET_SLEEPING(td);
251		mi_switch();
252	}
253	/*
254	 * We're awake from voluntary sleep.
255	 */
256	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
257	    p->p_comm);
258	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
259	td->td_flags &= ~TDF_SINTR;
260	if (td->td_flags & TDF_TIMEOUT) {
261		td->td_flags &= ~TDF_TIMEOUT;
262		if (sig == 0)
263			rval = EWOULDBLOCK;
264	} else if (td->td_flags & TDF_TIMOFAIL) {
265		td->td_flags &= ~TDF_TIMOFAIL;
266	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
267		/*
268		 * This isn't supposed to be pretty.  If we are here, then
269		 * the endtsleep() callout is currently executing on another
270		 * CPU and is either spinning on the sched_lock or will be
271		 * soon.  If we don't synchronize here, there is a chance
272		 * that this process may msleep() again before the callout
273		 * has a chance to run and the callout may end up waking up
274		 * the wrong msleep().  Yuck.
275		 */
276		TD_SET_SLEEPING(td);
277		p->p_stats->p_ru.ru_nivcsw++;
278		mi_switch();
279		td->td_flags &= ~TDF_TIMOFAIL;
280	}
281	mtx_unlock_spin(&sched_lock);
282
283	if (rval == 0 && catch) {
284		PROC_LOCK(p);
285		/* XXX: shouldn't we always be calling cursig() */
286		if (sig != 0 || (sig = cursig(td))) {
287			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
288				rval = EINTR;
289			else
290				rval = ERESTART;
291		}
292		PROC_UNLOCK(p);
293	}
294#ifdef KTRACE
295	if (KTRPOINT(td, KTR_CSW))
296		ktrcsw(0, 0);
297#endif
298	PICKUP_GIANT();
299	if (mtx != NULL) {
300		mtx_lock(mtx);
301		WITNESS_RESTORE(&mtx->mtx_object, mtx);
302	}
303	return (rval);
304}
305
306/*
307 * Implement timeout for msleep()
308 *
309 * If process hasn't been awakened (wchan non-zero),
310 * set timeout flag and undo the sleep.  If proc
311 * is stopped, just unsleep so it will remain stopped.
312 * MP-safe, called without the Giant mutex.
313 */
314static void
315endtsleep(arg)
316	void *arg;
317{
318	register struct thread *td = arg;
319
320	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
321	    td, td->td_proc->p_pid, td->td_proc->p_comm);
322	mtx_lock_spin(&sched_lock);
323	/*
324	 * This is the other half of the synchronization with msleep()
325	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
326	 * race and just need to put the process back on the runqueue.
327	 */
328	if (TD_ON_SLEEPQ(td)) {
329		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
330		TD_CLR_ON_SLEEPQ(td);
331		td->td_flags |= TDF_TIMEOUT;
332	} else {
333		td->td_flags |= TDF_TIMOFAIL;
334	}
335	TD_CLR_SLEEPING(td);
336	setrunnable(td);
337	mtx_unlock_spin(&sched_lock);
338}
339
340/*
341 * Abort a thread, as if an interrupt had occured.  Only abort
342 * interruptable waits (unfortunatly it isn't only safe to abort others).
343 * This is about identical to cv_abort().
344 * Think about merging them?
345 * Also, whatever the signal code does...
346 */
347void
348abortsleep(struct thread *td)
349{
350
351	mtx_assert(&sched_lock, MA_OWNED);
352	/*
353	 * If the TDF_TIMEOUT flag is set, just leave. A
354	 * timeout is scheduled anyhow.
355	 */
356	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
357		if (TD_ON_SLEEPQ(td)) {
358			unsleep(td);
359			TD_CLR_SLEEPING(td);
360			setrunnable(td);
361		}
362	}
363}
364
365/*
366 * Remove a process from its wait queue
367 */
368void
369unsleep(struct thread *td)
370{
371
372	mtx_lock_spin(&sched_lock);
373	if (TD_ON_SLEEPQ(td)) {
374		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
375		TD_CLR_ON_SLEEPQ(td);
376	}
377	mtx_unlock_spin(&sched_lock);
378}
379
380/*
381 * Make all processes sleeping on the specified identifier runnable.
382 */
383void
384wakeup(ident)
385	register void *ident;
386{
387	register struct slpquehead *qp;
388	register struct thread *td;
389	struct thread *ntd;
390	struct proc *p;
391
392	mtx_lock_spin(&sched_lock);
393	qp = &slpque[LOOKUP(ident)];
394restart:
395	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
396		ntd = TAILQ_NEXT(td, td_slpq);
397		if (td->td_wchan == ident) {
398			unsleep(td);
399			TD_CLR_SLEEPING(td);
400			setrunnable(td);
401			p = td->td_proc;
402			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
403			    td, p->p_pid, p->p_comm);
404			goto restart;
405		}
406	}
407	mtx_unlock_spin(&sched_lock);
408}
409
410/*
411 * Make a process sleeping on the specified identifier runnable.
412 * May wake more than one process if a target process is currently
413 * swapped out.
414 */
415void
416wakeup_one(ident)
417	register void *ident;
418{
419	register struct slpquehead *qp;
420	register struct thread *td;
421	register struct proc *p;
422	struct thread *ntd;
423
424	mtx_lock_spin(&sched_lock);
425	qp = &slpque[LOOKUP(ident)];
426	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
427		ntd = TAILQ_NEXT(td, td_slpq);
428		if (td->td_wchan == ident) {
429			unsleep(td);
430			TD_CLR_SLEEPING(td);
431			setrunnable(td);
432			p = td->td_proc;
433			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
434			    td, p->p_pid, p->p_comm);
435			break;
436		}
437	}
438	mtx_unlock_spin(&sched_lock);
439}
440
441/*
442 * The machine independent parts of mi_switch().
443 */
444void
445mi_switch(void)
446{
447	struct bintime new_switchtime;
448	struct thread *td = curthread;	/* XXX */
449	struct proc *p = td->td_proc;	/* XXX */
450	struct kse *ke = td->td_kse;
451	u_int sched_nest;
452
453	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
454
455	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
456#ifdef INVARIANTS
457	if (!TD_ON_LOCK(td) &&
458	    !TD_ON_RUNQ(td) &&
459	    !TD_IS_RUNNING(td))
460		mtx_assert(&Giant, MA_NOTOWNED);
461#endif
462	KASSERT(td->td_critnest == 1,
463	    ("mi_switch: switch in a critical section"));
464
465	/*
466	 * Compute the amount of time during which the current
467	 * process was running, and add that to its total so far.
468	 */
469	binuptime(&new_switchtime);
470	bintime_add(&p->p_runtime, &new_switchtime);
471	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
472
473#ifdef DDB
474	/*
475	 * Don't perform context switches from the debugger.
476	 */
477	if (db_active) {
478		mtx_unlock_spin(&sched_lock);
479		db_error("Context switches not allowed in the debugger.");
480	}
481#endif
482
483	/*
484	 * Check if the process exceeds its cpu resource allocation.  If
485	 * over max, arrange to kill the process in ast().
486	 */
487	if (p->p_cpulimit != RLIM_INFINITY &&
488	    p->p_runtime.sec > p->p_cpulimit) {
489		p->p_sflag |= PS_XCPU;
490		ke->ke_flags |= KEF_ASTPENDING;
491	}
492
493	/*
494	 * Finish up stats for outgoing thread.
495	 */
496	cnt.v_swtch++;
497	PCPU_SET(switchtime, new_switchtime);
498	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
499	    p->p_comm);
500
501	sched_nest = sched_lock.mtx_recurse;
502	sched_switchout(td);
503
504	cpu_switch();		/* SHAZAM!!*/
505
506	sched_lock.mtx_recurse = sched_nest;
507	sched_lock.mtx_lock = (uintptr_t)td;
508	sched_switchin(td);
509
510	/*
511	 * Start setting up stats etc. for the incoming thread.
512	 * Similar code in fork_exit() is returned to by cpu_switch()
513	 * in the case of a new thread/process.
514	 */
515	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
516	    p->p_comm);
517	if (PCPU_GET(switchtime.sec) == 0)
518		binuptime(PCPU_PTR(switchtime));
519	PCPU_SET(switchticks, ticks);
520
521	/*
522	 * Call the switchin function while still holding the scheduler lock
523	 * (used by the idlezero code and the general page-zeroing code)
524	 */
525	if (td->td_switchin)
526		td->td_switchin();
527}
528
529/*
530 * Change process state to be runnable,
531 * placing it on the run queue if it is in memory,
532 * and awakening the swapper if it isn't in memory.
533 */
534void
535setrunnable(struct thread *td)
536{
537	struct proc *p = td->td_proc;
538
539	mtx_assert(&sched_lock, MA_OWNED);
540	switch (p->p_state) {
541	case PRS_ZOMBIE:
542		panic("setrunnable(1)");
543	default:
544		break;
545	}
546	switch (td->td_state) {
547	case TDS_RUNNING:
548	case TDS_RUNQ:
549		return;
550	case TDS_INHIBITED:
551		/*
552		 * If we are only inhibited because we are swapped out
553		 * then arange to swap in this process. Otherwise just return.
554		 */
555		if (td->td_inhibitors != TDI_SWAPPED)
556			return;
557	case TDS_CAN_RUN:
558		break;
559	default:
560		printf("state is 0x%x", td->td_state);
561		panic("setrunnable(2)");
562	}
563	if ((p->p_sflag & PS_INMEM) == 0) {
564		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
565			p->p_sflag |= PS_SWAPINREQ;
566			wakeup(&proc0);
567		}
568	} else
569		sched_wakeup(td);
570}
571
572/*
573 * Compute a tenex style load average of a quantity on
574 * 1, 5 and 15 minute intervals.
575 * XXXKSE   Needs complete rewrite when correct info is available.
576 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
577 */
578static void
579loadav(void *arg)
580{
581	int i, nrun;
582	struct loadavg *avg;
583	struct proc *p;
584	struct thread *td;
585
586	avg = &averunnable;
587	sx_slock(&allproc_lock);
588	nrun = 0;
589	FOREACH_PROC_IN_SYSTEM(p) {
590		FOREACH_THREAD_IN_PROC(p, td) {
591			switch (td->td_state) {
592			case TDS_RUNQ:
593			case TDS_RUNNING:
594				if ((p->p_flag & P_NOLOAD) != 0)
595					goto nextproc;
596				nrun++; /* XXXKSE */
597			default:
598				break;
599			}
600nextproc:
601			continue;
602		}
603	}
604	sx_sunlock(&allproc_lock);
605	for (i = 0; i < 3; i++)
606		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
607		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
608
609	/*
610	 * Schedule the next update to occur after 5 seconds, but add a
611	 * random variation to avoid synchronisation with processes that
612	 * run at regular intervals.
613	 */
614	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
615	    loadav, NULL);
616}
617
618/* ARGSUSED */
619static void
620sched_setup(dummy)
621	void *dummy;
622{
623	callout_init(&loadav_callout, 0);
624
625	/* Kick off timeout driven events by calling first time. */
626	loadav(NULL);
627}
628
629/*
630 * General purpose yield system call
631 */
632int
633yield(struct thread *td, struct yield_args *uap)
634{
635	struct ksegrp *kg = td->td_ksegrp;
636
637	mtx_assert(&Giant, MA_NOTOWNED);
638	mtx_lock_spin(&sched_lock);
639	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
640	sched_prio(td, PRI_MAX_TIMESHARE);
641	mi_switch();
642	mtx_unlock_spin(&sched_lock);
643	td->td_retval[0] = 0;
644
645	return (0);
646}
647
648