kern_synch.c revision 104964
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 104964 2002-10-12 05:32:24Z jeff $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/vmmeter.h>
61#ifdef DDB
62#include <ddb/ddb.h>
63#endif
64#ifdef KTRACE
65#include <sys/uio.h>
66#include <sys/ktrace.h>
67#endif
68
69#include <machine/cpu.h>
70
71static void sched_setup(void *dummy);
72SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73
74int	hogticks;
75int	lbolt;
76
77static struct callout loadav_callout;
78
79struct loadavg averunnable =
80	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81/*
82 * Constants for averages over 1, 5, and 15 minutes
83 * when sampling at 5 second intervals.
84 */
85static fixpt_t cexp[3] = {
86	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89};
90
91static void	endtsleep(void *);
92static void	loadav(void *arg);
93
94/*
95 * We're only looking at 7 bits of the address; everything is
96 * aligned to 4, lots of things are aligned to greater powers
97 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
98 */
99#define TABLESIZE	128
100static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
101#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
102
103void
104sleepinit(void)
105{
106	int i;
107
108	hogticks = (hz / 10) * 2;	/* Default only. */
109	for (i = 0; i < TABLESIZE; i++)
110		TAILQ_INIT(&slpque[i]);
111}
112
113/*
114 * General sleep call.  Suspends the current process until a wakeup is
115 * performed on the specified identifier.  The process will then be made
116 * runnable with the specified priority.  Sleeps at most timo/hz seconds
117 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
118 * before and after sleeping, else signals are not checked.  Returns 0 if
119 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
120 * signal needs to be delivered, ERESTART is returned if the current system
121 * call should be restarted if possible, and EINTR is returned if the system
122 * call should be interrupted by the signal (return EINTR).
123 *
124 * The mutex argument is exited before the caller is suspended, and
125 * entered before msleep returns.  If priority includes the PDROP
126 * flag the mutex is not entered before returning.
127 */
128
129int
130msleep(ident, mtx, priority, wmesg, timo)
131	void *ident;
132	struct mtx *mtx;
133	int priority, timo;
134	const char *wmesg;
135{
136	struct thread *td = curthread;
137	struct proc *p = td->td_proc;
138	int sig, catch = priority & PCATCH;
139	int rval = 0;
140	WITNESS_SAVE_DECL(mtx);
141
142#ifdef KTRACE
143	if (KTRPOINT(td, KTR_CSW))
144		ktrcsw(1, 0);
145#endif
146	WITNESS_SLEEP(0, &mtx->mtx_object);
147	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
148	    ("sleeping without a mutex"));
149	/*
150	 * If we are capable of async syscalls and there isn't already
151	 * another one ready to return, start a new thread
152	 * and queue it as ready to run. Note that there is danger here
153	 * because we need to make sure that we don't sleep allocating
154	 * the thread (recursion here might be bad).
155	 * Hence the TDF_INMSLEEP flag.
156	 */
157	if (p->p_flag & P_KSES) {
158		/* Just don't bother if we are exiting
159				and not the exiting thread. */
160		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
161			return (EINTR);
162		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
163			/*
164			 * Arrange for an upcall to be readied.
165			 * it will not actually happen until all
166			 * pending in-kernel work for this KSEGRP
167			 * has been done.
168			 */
169			mtx_lock_spin(&sched_lock);
170			/* Don't recurse here! */
171			td->td_flags |= TDF_INMSLEEP;
172			thread_schedule_upcall(td, td->td_kse);
173			td->td_flags &= ~TDF_INMSLEEP;
174			mtx_unlock_spin(&sched_lock);
175		}
176	}
177	mtx_lock_spin(&sched_lock);
178	if (cold ) {
179		/*
180		 * During autoconfiguration, just give interrupts
181		 * a chance, then just return.
182		 * Don't run any other procs or panic below,
183		 * in case this is the idle process and already asleep.
184		 */
185		if (mtx != NULL && priority & PDROP)
186			mtx_unlock(mtx);
187		mtx_unlock_spin(&sched_lock);
188		return (0);
189	}
190
191	DROP_GIANT();
192
193	if (mtx != NULL) {
194		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
195		WITNESS_SAVE(&mtx->mtx_object, mtx);
196		mtx_unlock(mtx);
197		if (priority & PDROP)
198			mtx = NULL;
199	}
200
201	KASSERT(p != NULL, ("msleep1"));
202	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
203
204	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
205	    td, p->p_pid, p->p_comm, wmesg, ident);
206
207	td->td_wchan = ident;
208	td->td_wmesg = wmesg;
209	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
210	TD_SET_ON_SLEEPQ(td);
211	if (timo)
212		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
213	/*
214	 * We put ourselves on the sleep queue and start our timeout
215	 * before calling thread_suspend_check, as we could stop there, and
216	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
217	 * without resuming us, thus we must be ready for sleep
218	 * when cursig is called.  If the wakeup happens while we're
219	 * stopped, td->td_wchan will be 0 upon return from cursig.
220	 */
221	if (catch) {
222		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
223		    p->p_pid, p->p_comm);
224		td->td_flags |= TDF_SINTR;
225		mtx_unlock_spin(&sched_lock);
226		PROC_LOCK(p);
227		sig = cursig(td);
228		if (sig == 0 && thread_suspend_check(1))
229			sig = SIGSTOP;
230		mtx_lock_spin(&sched_lock);
231		PROC_UNLOCK(p);
232		if (sig != 0) {
233			if (TD_ON_SLEEPQ(td))
234				unsleep(td);
235		} else if (!TD_ON_SLEEPQ(td))
236			catch = 0;
237	} else
238		sig = 0;
239
240	/*
241	 * Let the scheduler know we're about to voluntarily go to sleep.
242	 */
243	sched_sleep(td, priority & PRIMASK);
244
245	if (TD_ON_SLEEPQ(td)) {
246		p->p_stats->p_ru.ru_nvcsw++;
247		TD_SET_SLEEPING(td);
248		mi_switch();
249	}
250	/*
251	 * We're awake from voluntary sleep.
252	 */
253	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
254	    p->p_comm);
255	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
256	td->td_flags &= ~TDF_SINTR;
257	if (td->td_flags & TDF_TIMEOUT) {
258		td->td_flags &= ~TDF_TIMEOUT;
259		if (sig == 0)
260			rval = EWOULDBLOCK;
261	} else if (td->td_flags & TDF_TIMOFAIL) {
262		td->td_flags &= ~TDF_TIMOFAIL;
263	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
264		/*
265		 * This isn't supposed to be pretty.  If we are here, then
266		 * the endtsleep() callout is currently executing on another
267		 * CPU and is either spinning on the sched_lock or will be
268		 * soon.  If we don't synchronize here, there is a chance
269		 * that this process may msleep() again before the callout
270		 * has a chance to run and the callout may end up waking up
271		 * the wrong msleep().  Yuck.
272		 */
273		TD_SET_SLEEPING(td);
274		p->p_stats->p_ru.ru_nivcsw++;
275		mi_switch();
276		td->td_flags &= ~TDF_TIMOFAIL;
277	}
278	mtx_unlock_spin(&sched_lock);
279
280	if (rval == 0 && catch) {
281		PROC_LOCK(p);
282		/* XXX: shouldn't we always be calling cursig() */
283		if (sig != 0 || (sig = cursig(td))) {
284			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
285				rval = EINTR;
286			else
287				rval = ERESTART;
288		}
289		PROC_UNLOCK(p);
290	}
291#ifdef KTRACE
292	if (KTRPOINT(td, KTR_CSW))
293		ktrcsw(0, 0);
294#endif
295	PICKUP_GIANT();
296	if (mtx != NULL) {
297		mtx_lock(mtx);
298		WITNESS_RESTORE(&mtx->mtx_object, mtx);
299	}
300	return (rval);
301}
302
303/*
304 * Implement timeout for msleep()
305 *
306 * If process hasn't been awakened (wchan non-zero),
307 * set timeout flag and undo the sleep.  If proc
308 * is stopped, just unsleep so it will remain stopped.
309 * MP-safe, called without the Giant mutex.
310 */
311static void
312endtsleep(arg)
313	void *arg;
314{
315	register struct thread *td = arg;
316
317	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
318	    td, td->td_proc->p_pid, td->td_proc->p_comm);
319	mtx_lock_spin(&sched_lock);
320	/*
321	 * This is the other half of the synchronization with msleep()
322	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
323	 * race and just need to put the process back on the runqueue.
324	 */
325	if (TD_ON_SLEEPQ(td)) {
326		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
327		TD_CLR_ON_SLEEPQ(td);
328		td->td_flags |= TDF_TIMEOUT;
329	} else {
330		td->td_flags |= TDF_TIMOFAIL;
331	}
332	TD_CLR_SLEEPING(td);
333	setrunnable(td);
334	mtx_unlock_spin(&sched_lock);
335}
336
337/*
338 * Abort a thread, as if an interrupt had occured.  Only abort
339 * interruptable waits (unfortunatly it isn't only safe to abort others).
340 * This is about identical to cv_abort().
341 * Think about merging them?
342 * Also, whatever the signal code does...
343 */
344void
345abortsleep(struct thread *td)
346{
347
348	mtx_assert(&sched_lock, MA_OWNED);
349	/*
350	 * If the TDF_TIMEOUT flag is set, just leave. A
351	 * timeout is scheduled anyhow.
352	 */
353	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
354		if (TD_ON_SLEEPQ(td)) {
355			unsleep(td);
356			TD_CLR_SLEEPING(td);
357			setrunnable(td);
358		}
359	}
360}
361
362/*
363 * Remove a process from its wait queue
364 */
365void
366unsleep(struct thread *td)
367{
368
369	mtx_lock_spin(&sched_lock);
370	if (TD_ON_SLEEPQ(td)) {
371		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
372		TD_CLR_ON_SLEEPQ(td);
373	}
374	mtx_unlock_spin(&sched_lock);
375}
376
377/*
378 * Make all processes sleeping on the specified identifier runnable.
379 */
380void
381wakeup(ident)
382	register void *ident;
383{
384	register struct slpquehead *qp;
385	register struct thread *td;
386	struct thread *ntd;
387	struct proc *p;
388
389	mtx_lock_spin(&sched_lock);
390	qp = &slpque[LOOKUP(ident)];
391restart:
392	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
393		ntd = TAILQ_NEXT(td, td_slpq);
394		if (td->td_wchan == ident) {
395			unsleep(td);
396			TD_CLR_SLEEPING(td);
397			setrunnable(td);
398			p = td->td_proc;
399			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
400			    td, p->p_pid, p->p_comm);
401			goto restart;
402		}
403	}
404	mtx_unlock_spin(&sched_lock);
405}
406
407/*
408 * Make a process sleeping on the specified identifier runnable.
409 * May wake more than one process if a target process is currently
410 * swapped out.
411 */
412void
413wakeup_one(ident)
414	register void *ident;
415{
416	register struct slpquehead *qp;
417	register struct thread *td;
418	register struct proc *p;
419	struct thread *ntd;
420
421	mtx_lock_spin(&sched_lock);
422	qp = &slpque[LOOKUP(ident)];
423	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
424		ntd = TAILQ_NEXT(td, td_slpq);
425		if (td->td_wchan == ident) {
426			unsleep(td);
427			TD_CLR_SLEEPING(td);
428			setrunnable(td);
429			p = td->td_proc;
430			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
431			    td, p->p_pid, p->p_comm);
432			break;
433		}
434	}
435	mtx_unlock_spin(&sched_lock);
436}
437
438/*
439 * The machine independent parts of mi_switch().
440 */
441void
442mi_switch(void)
443{
444	struct bintime new_switchtime;
445	struct thread *td = curthread;	/* XXX */
446	struct proc *p = td->td_proc;	/* XXX */
447	struct kse *ke = td->td_kse;
448	u_int sched_nest;
449
450	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
451
452	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
453#ifdef INVARIANTS
454	if (!TD_ON_LOCK(td) &&
455	    !TD_ON_RUNQ(td) &&
456	    !TD_IS_RUNNING(td))
457		mtx_assert(&Giant, MA_NOTOWNED);
458#endif
459	KASSERT(td->td_critnest == 1,
460	    ("mi_switch: switch in a critical section"));
461
462	/*
463	 * Compute the amount of time during which the current
464	 * process was running, and add that to its total so far.
465	 */
466	binuptime(&new_switchtime);
467	bintime_add(&p->p_runtime, &new_switchtime);
468	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
469
470#ifdef DDB
471	/*
472	 * Don't perform context switches from the debugger.
473	 */
474	if (db_active) {
475		mtx_unlock_spin(&sched_lock);
476		db_error("Context switches not allowed in the debugger.");
477	}
478#endif
479
480	/*
481	 * Check if the process exceeds its cpu resource allocation.  If
482	 * over max, arrange to kill the process in ast().
483	 */
484	if (p->p_cpulimit != RLIM_INFINITY &&
485	    p->p_runtime.sec > p->p_cpulimit) {
486		p->p_sflag |= PS_XCPU;
487		ke->ke_flags |= KEF_ASTPENDING;
488	}
489
490	/*
491	 * Finish up stats for outgoing thread.
492	 */
493	cnt.v_swtch++;
494	PCPU_SET(switchtime, new_switchtime);
495	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
496	    p->p_comm);
497
498	sched_nest = sched_lock.mtx_recurse;
499	sched_switchout(td);
500
501	cpu_switch();		/* SHAZAM!!*/
502
503	sched_lock.mtx_recurse = sched_nest;
504	sched_lock.mtx_lock = (uintptr_t)td;
505	sched_switchin(td);
506
507	/*
508	 * Start setting up stats etc. for the incoming thread.
509	 * Similar code in fork_exit() is returned to by cpu_switch()
510	 * in the case of a new thread/process.
511	 */
512	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
513	    p->p_comm);
514	if (PCPU_GET(switchtime.sec) == 0)
515		binuptime(PCPU_PTR(switchtime));
516	PCPU_SET(switchticks, ticks);
517
518	/*
519	 * Call the switchin function while still holding the scheduler lock
520	 * (used by the idlezero code and the general page-zeroing code)
521	 */
522	if (td->td_switchin)
523		td->td_switchin();
524}
525
526/*
527 * Change process state to be runnable,
528 * placing it on the run queue if it is in memory,
529 * and awakening the swapper if it isn't in memory.
530 */
531void
532setrunnable(struct thread *td)
533{
534	struct proc *p = td->td_proc;
535
536	mtx_assert(&sched_lock, MA_OWNED);
537	switch (p->p_state) {
538	case PRS_ZOMBIE:
539		panic("setrunnable(1)");
540	default:
541		break;
542	}
543	switch (td->td_state) {
544	case TDS_RUNNING:
545	case TDS_RUNQ:
546		return;
547	case TDS_INHIBITED:
548		/*
549		 * If we are only inhibited because we are swapped out
550		 * then arange to swap in this process. Otherwise just return.
551		 */
552		if (td->td_inhibitors != TDI_SWAPPED)
553			return;
554	case TDS_CAN_RUN:
555		break;
556	default:
557		printf("state is 0x%x", td->td_state);
558		panic("setrunnable(2)");
559	}
560	if ((p->p_sflag & PS_INMEM) == 0) {
561		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
562			p->p_sflag |= PS_SWAPINREQ;
563			wakeup(&proc0);
564		}
565	} else
566		sched_wakeup(td);
567}
568
569/*
570 * Compute a tenex style load average of a quantity on
571 * 1, 5 and 15 minute intervals.
572 * XXXKSE   Needs complete rewrite when correct info is available.
573 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
574 */
575static void
576loadav(void *arg)
577{
578	int i, nrun;
579	struct loadavg *avg;
580	struct proc *p;
581	struct thread *td;
582
583	avg = &averunnable;
584	sx_slock(&allproc_lock);
585	nrun = 0;
586	FOREACH_PROC_IN_SYSTEM(p) {
587		FOREACH_THREAD_IN_PROC(p, td) {
588			switch (td->td_state) {
589			case TDS_RUNQ:
590			case TDS_RUNNING:
591				if ((p->p_flag & P_NOLOAD) != 0)
592					goto nextproc;
593				nrun++; /* XXXKSE */
594			default:
595				break;
596			}
597nextproc:
598			continue;
599		}
600	}
601	sx_sunlock(&allproc_lock);
602	for (i = 0; i < 3; i++)
603		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
604		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
605
606	/*
607	 * Schedule the next update to occur after 5 seconds, but add a
608	 * random variation to avoid synchronisation with processes that
609	 * run at regular intervals.
610	 */
611	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
612	    loadav, NULL);
613}
614
615/* ARGSUSED */
616static void
617sched_setup(dummy)
618	void *dummy;
619{
620	callout_init(&loadav_callout, 0);
621
622	/* Kick off timeout driven events by calling first time. */
623	loadav(NULL);
624}
625
626/*
627 * General purpose yield system call
628 */
629int
630yield(struct thread *td, struct yield_args *uap)
631{
632	struct ksegrp *kg = td->td_ksegrp;
633
634	mtx_assert(&Giant, MA_NOTOWNED);
635	mtx_lock_spin(&sched_lock);
636	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
637	sched_prio(td, PRI_MAX_TIMESHARE);
638	mi_switch();
639	mtx_unlock_spin(&sched_lock);
640	td->td_retval[0] = 0;
641
642	return (0);
643}
644
645